Skip to main content
Log in

Solute-atom segregation is high-angle (002) twist boundaries in dilute Au–Pt alloys

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Solute-atom segregation is studied by Monte Carlo simulations for three high-angle symmetrical (002) twist boundaries in Au-1 at. % Pt and Pt-1 at. % Au alloys at T = 850 K. It complements our previous study, that focused mainly on low-angle boundaries in the same alloys. Solute enhancement occurs on the Pt-rich side of the phase diagram, while on the Au-rich side net depletion in solute is observed. Following the trend observed for low-angle boundaries, Au as a solute prefers the structural units of the perfect crystal type, while Pt as a solute is depleted at those sites. The solutc concentration at structural units depends on the planar fraction of those units in the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Seah and E.D. Hondros, Proc. R. Soc. London A 355, 191 (1975).

    Google Scholar 

  2. R. W. Balluffi, in Interfacial Segregation, edited by W. C. Johnson and J.M. Blakely (ASM, Metals Park, OH, 1979), p. 193.

    Google Scholar 

  3. E. D. Hondros and M. P. Seah, in Physical Metallurgy, edited by R.W. Cahn and P. Haasen (North Holland, Amsterdam, 1983), p. 856.

    Google Scholar 

  4. C. L. Briant, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 463.

    Google Scholar 

  5. S.M. Foiles and D.N. Seidman, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 497.

    Google Scholar 

  6. R. Kirchheim, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 481.

    Google Scholar 

  7. E.W. Hart, in Nature and Behavior of Grain Boundaries, edited by H. Hu (Plenum, New York, 1972), p. 155; J.W. Cahn, J. Phys. (Paris) 43, C6-192 (1982).

    Chapter  Google Scholar 

  8. D. N. Seidman, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 58.

    Google Scholar 

  9. S.M. Foiles, Phys. Rev. B. 40, 11502 (1989).

    Article  CAS  Google Scholar 

  10. A. Seki, D.N. Seidman, Y. Oh, and S.M. Foiles, Acta Metall. Mater. 39, 3167, 3179 (1991).

    Article  Google Scholar 

  11. D. Udler and D.N. Seidman, Phys. Status Solidi (b) 172, 267 (1992); D. Udler and D.N. Seidman, in Computational Methods in Materials Science, edited by J. E. Mark, M. E. Glicksman, and S.P. Marsh (Mater. Res. Soc. Symp. Proc. 278, Pittsburgh, PA 1992), p. 223; D. Udler and D.N. Seidman, Mater. Sci. Forum 126-128, 165, 169 (1993); Mater. Sci. Forum 155-158, 189 (1994).

    Article  CAS  Google Scholar 

  12. D. Udler and D.N. Seidman, Mater. Sci. Forum 126-128, 169 (1993); D. Udler and D.N. Seidman, Acta Metall. Mater. 42, 1959 (1994).

  13. D. Udler and D.N. Seidman, Interface Sci. 3, 41 (1995).

    Article  CAS  Google Scholar 

  14. R. Najafabadi, D.J. Srolovitz, H.Y. Wang, and R. LeSar, Acta Metall. Mater. 39, 3071 (1991); H.Y. Wang, R. Najafabadi, and D.J. Srolovitz, Philos. Mag. A 65, 625 (1992); H. Y. Wang, R. Najafabadi, D. J. Srolovitz, and R. LeSar, Interface Sci. 1, 31 (1993).

    Article  CAS  Google Scholar 

  15. H.Y. Wang, R. Najafabadi, and D.J. Srolovitz, Philos. Mag. A 65, 625 (1992).

    Article  CAS  Google Scholar 

  16. H.Y. Wang, R. Najafabadi, D.J. Srolovitz, and R. LeSar, Acta Metall. Mater. 41, 2553 (1993).

    Google Scholar 

  17. P. D. Bristowe, I. Majid, C. A. Counterman, D. Wang, and R.W. Balluffi, Mater. Sci. Forum 126-128, 25 (1993); I. Majid, C. A. Counterman, P. D. Bristowe, and R. W. Balluffi, Acta Metall. 42, 3331 (1994).

    Article  CAS  Google Scholar 

  18. M. Menyhard, Min Yan, and V. Vitek, Acta Metall. Mater. 42, 2783 (1994).

    Article  CAS  Google Scholar 

  19. D. Schwartz, V. Vitek, and A. P. Sutton, Philos. Mag. A 51, 499 (1985); D. Schwartz, V. Vitek, and P.D. Bristowe, Acta Metall. 36, 675 (1988).

    Article  CAS  Google Scholar 

  20. D. Udler and D.N. Seidman, unpublished.

  21. N. Metropolis, M.N. Rosenbluth, A. W. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  CAS  Google Scholar 

  22. S.M. Foiles, in Surface Segregation and Related Phenomena, edited by P. A. Dowben and A. Miller (CRC Press, Boca Raton, FL, 1990), p. 79.

    Google Scholar 

  23. S.M. Foiles, Phys. Rev. Β 32, 7685 (1985); M.S. Daw, Phys. Rev. Β 39, 7441 (1989).

    Article  CAS  Google Scholar 

  24. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. Β 33, 7983 (1986); Phys. Rev. Β 37, 10378 (1988).

    Article  CAS  Google Scholar 

  25. M.S. Daw, S.M. Foiles, and M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993).

    Article  CAS  Google Scholar 

  26. H. Okamoto and T.B. Massalski, Bull. Alloy Phase Diag. 6, 461 (1985).

    Google Scholar 

  27. I. Majid and P.D. Bristowe, Scripta Metall. 21, 1153 (1987); I. Majid, P.D. Bristowe, and R.W. Balluffi, Phys. Rev. Β 40, 2779 (1989).

    Article  Google Scholar 

  28. D. Udler and D. N. Seidman, unpublished.

  29. P. Wynblatt and R. C. Kuo, in Interfacial Segregation, edited by W.C. Johnson and J.M. Blakely (ASM, Metals Park, OH 1979), p. 115.

    Google Scholar 

  30. S. Hofmann and P. Lejcek, Scripta Metall. 25, 2259 (1989).

    Article  Google Scholar 

  31. J.J. Burton and E.S. Machlin, Phys. Rev. Lett. 37, 1433 (1981).

    Article  Google Scholar 

  32. H. Stehle and A. Seeger, Z. Phys. 146, 217 (1956); A. Seeger and P. Haasen, Philos. Mag. 3, 470 (1958); R.L. Fleischer, Acta Metall. 11, 203 (1961).

    Article  Google Scholar 

  33. D. Udler and D. N. Seidman, Scripta Metall. Mater. 26, 449, 803 (1992).

    Article  CAS  Google Scholar 

  34. J.E. Hilliard, M. Cohen, and B.L. Averbach, Acta Metall. 8, 26 (1960).

    Article  Google Scholar 

  35. D.N. Seidman, in Encyclopedia of Materials Science and Engineering, edited by M.B. Bever (Pergamon Press, Oxford, 1986), pp. 1744-1745; D.N. Seidman, in Encyclopedia of Advanced Materials, edited by D. Bloor, R.J. Brook, M.C. Flemings, S. Mahajan, and R. W. Cahn (Pergamon Press, Oxford, 1994), p. 827.

    Google Scholar 

  36. R. Wagner, Field-Ion Microscopy in Materials Science (Springer-Verlag, Berlin 1982).

    Book  Google Scholar 

  37. T. Sakurai, A. Sakai, and H.W. Pickering, Atom-Probe Field-ion Microscopy and Its Applications (Academic Press, San Diego, CA, 1989).

    Google Scholar 

  38. M. K. Miller and G. D.W. Smith, Atom Probe Microanalysis: Principles and Applications to Materials Science (Materials Research Society, Pittsburgh, PA, 1989).

    Google Scholar 

  39. T. T. Tsong, Atom-Probe Field-ion Microscopy (Cambridge University Press, Cambridge, England, 1990).

    Book  Google Scholar 

  40. A. Cerezo, T. J. Godfrey, and G. D. W. Smith, Rev. Sci. Instrum. 59, 862 (1988).

    Article  Google Scholar 

  41. D. Blavette, B. Deconihout, A. Bostel, J.M. Sarrau, M. Bouet, and A. Menand, Rev. Sci. Instrum. 64, 2911 (1993).

    Article  CAS  Google Scholar 

  42. B. W. Krakauer, J. G. Hu, S.-M. Kuo, R. L. Mallick, A. Seki, D. N. Seidman, J. P. Baker, and R. Loyd, Rev. Sci. Instrum. 61, 3745 (1990).

    Article  Google Scholar 

  43. B.W. Krakauer and D.N. Seidman, Rev. Sci. Instrum. 63, 4071 (1992).

    Article  CAS  Google Scholar 

  44. D.N. Seidman, J.G. Hu, S-M. Kuo, B.W. Krakauer, Y. Oh, and A. Seki, Coll. Phys. (Paris), 51, C1-47 (1990).

    Google Scholar 

  45. D.N. Seidman, Mater. Sci. Eng. A 137, 57 (1991).

    Article  Google Scholar 

  46. D. N. Seidman, B. W. Krakauer, and D. K. Chan, Microscopy Soc. America 24 (1), 375 (1994); D.N. Seidman, B.W. Krakauer, and D. Udler, J. Phys. Chem. Solids 55, 1035 (1994).

    Google Scholar 

  47. S.M. Kuo, A. Seki, Y. Oh, and D.N. Seidman, Phys. Rev. Lett. 65, 199 (1990).

    Article  CAS  Google Scholar 

  48. J.G. Hu and D.N. Seidman, Phys. Rev. Lett. 65, 1615 (1990).

    Article  CAS  Google Scholar 

  49. J. G. Hu and D. N. Seidman, Scripta Metall. Mater. 26,693 (1992).

    Article  Google Scholar 

  50. J.G. Hu, Ph.D. Thesis, Northwestern University (1991).

  51. B. W. Krakauer and D. N. Seidman, Phys. Rev. Β 48, 6724 (1993).

    Article  CAS  Google Scholar 

  52. B.W. Krakauer, Ph.D. Thesis, Northwestern University (1993).

  53. B.W. Krakauer and D.N. Seidman, Mater. Sci. Forum 154-156, 189 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udler, D., Seidman, D.N. Solute-atom segregation is high-angle (002) twist boundaries in dilute Au–Pt alloys. Journal of Materials Research 10, 1933–1941 (1995). https://doi.org/10.1557/JMR.1995.1933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.1933

Navigation