Skip to main content
Log in

Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline CoxCu100−x (4 ⋚ x ⋚ 49 at. %) powders were prepared by the reduction of metal acetates in a polyol. The structure of powders was characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), extended x-ray absorption fine structure (EXAFS) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, and vibrating sample magnetometry (VSM). As-synthesized powders were composites consisting of nanoscale crystallites of face-centered cubic (fcc) Cu and metastable face-centered cubic (fcc) Co. Complementary results of XRD, HRTEM, EXAFS, NMR, and VSM confirmed that there was no metastable alloying between Co and Cu. The NMR data also revealed that there was some hexagonal-closed-packed (hcp) Co in the samples. The powders were agglomerated, and consisted of aggregates of nanoscale crystallites of Co and Cu. Upon annealing, the powders with low Co contents showed an increase in both saturation magnetization and coercivity with increasing temperature. The results suggested that during preparation the nucleation of Cu occurred first, and the Cu crystallites served as nuclei for the formation of Co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, Superfine Particle Technology, edited by N. Ichinose, Y. Ozaki, and S. Kashu (Springer-Verlag, London, 1992); H. Gleiter, Nanostructured Materials 1, 1 (1992).

    Google Scholar 

  2. See papers in, for example, Molecularly Designed Ultrafine/Nanostructured Materials, edited by K. E. Gonsalves, G. M. Chow, T. D. Xiao, and R. C. Cammarata (Mater. Res. Soc. Symp. Proc. 351, Pittsburgh, PA, 1994); G.M. Chow, and K.E. Gonsalves, in NanoStructured Materials: Synthesis, Properties and Uses, edited by A. S. Edelstein and R. C. Cammarata (IOP Publishing Ltd., England, in press).

  3. M. Figlarz, F. Fievet, and J. P. Lagier, French Patent No. 82 21483 (December 21, 1982); Europe Patent No. 011 3281; US Patent No. 4539041; Finland Patent No. 74416.

  4. F. Fievet, J. P. Lagier, and M. Figlarz, MRS Bull., 29 (December, 1989).

  5. F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, Solid State Ionics 32/33, 198 (1989).

    Article  Google Scholar 

  6. C. Ducamp-Sanguesa, R. Herrera-Urbina, and M. Figlarz, J. Solid State Chem. 100, 272 (1992).

    Article  CAS  Google Scholar 

  7. C. Ducamp-Sanguesa, R. Herrera-Urbina, and M. Figlarz, Solid State Ionics 63-65, 25 (1993).

    Article  CAS  Google Scholar 

  8. F. Fievet, F. Fievet-Vincent, J. P. Lagier, B. Dumont, and M. Figlarz, J. Mater. Chem. 3, 627 (1993).

    Article  CAS  Google Scholar 

  9. J.R. Childress, C. L. Chien, and M. Nathan, Appl. Phys. Lett. 56, 95 (1990).

    Article  CAS  Google Scholar 

  10. S.H. Liou, S. Malhotra, Z. Shan, D.J. Sellmyer, S. Nafis, J.A. Woolam, C. P. Reed, R. J. DeAngelis, and G. M. Chow, J. Appl. Phys. 70, 5882 (1991).

    Article  CAS  Google Scholar 

  11. J.R. Childress and C.L. Chien, J. Appl. Phys. 70, 5885 (1991).

    Article  CAS  Google Scholar 

  12. J.Q. Xiao, J.S. Jiang, and C.L. Chien, Phys. Rev. Lett. 68, 3749 (1992).

    Article  CAS  Google Scholar 

  13. A. Tsoukatos, H. Wan, G.C. Hadjipanayis, and Z.G. Li, Appl. Phys. Lett. 61, 3059 (1992).

    Article  CAS  Google Scholar 

  14. G. M. Chow, T. Ambrose, J. Q. Xiao, M. E. Twigg, S. Baral, A. M. Ervin, S.B. Qadri, and C. R. Geng, Nanostructured Materials 1, 361 (1992).

    Article  CAS  Google Scholar 

  15. G.M. Chow, T. Ambose, J. Xiao, F. Kaatz, and A. Ervin, Nanostructured Materials 2, 131 (1993).

    Article  CAS  Google Scholar 

  16. Cobalt Monograph, edited by Centre D’Information Du Cobalt (Belgium, 1960), p. 177.

  17. R.A. Neiser, J. P. Kirkland, W.T. Elam, and S. Sampath, Nucl. Instrum. Methods, Phys. Res. Sect. A266, 220 (1988).

    Article  CAS  Google Scholar 

  18. S.M. Heald, in X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, edited by D. C. Koningsberger and R. Prins (John Wiley, New York, 1988), Chap. 3.

    Google Scholar 

  19. D.E. Sayers and B.A. Bunker, in X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, edited by D. C. Koningsberger and R. Prins (John Wiley, New York, 1988), Chap. 6.

    Google Scholar 

  20. Y. D. Zhang, W. A. Hines, J. I. Budnick, M. Choi, F. H. Sanchez, and R. Hasegawa, J. Magn. Magn. Mater. 61, 162 (1986).

    Article  CAS  Google Scholar 

  21. J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, and R.C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).

    Article  CAS  Google Scholar 

  22. Report on the “International Workshops on Standards and Criteria in XAFS”, in X-ray Absorption Fine Structure, edited by S. S. Hasnain (Ellis Horwood Ltd., England, 1991), p. 751.

  23. The magnitude for the Cu coordination number errors was determined by monitoring the doubling of the residual of the best fit. For further information, see M. Vaarkamp, I. Dring, R. J. Oldma, E.A. Stern, and D.C. Koningsberger, Phys. Rev. B 50, 7872 (1994).

    Article  CAS  Google Scholar 

  24. C. Meny, P. Panissod, and R. Loloee, Phys. Rev. B 45, 12269 (1992).

    Article  CAS  Google Scholar 

  25. B. Abeles, Appl. Solid State Science 6, 1 (1976).

    Article  CAS  Google Scholar 

  26. See Ref. 16, p. 75-77.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, G.M., Kurihara, L.K., Kemner, K.M. et al. Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process. Journal of Materials Research 10, 1546–1554 (1995). https://doi.org/10.1557/JMR.1995.1546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.1546

Navigation