Skip to main content
Log in

Composites based on thermally hyper-conductive vapor grown carbon fiber

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aluminum matrix composites and carbon/carbon composites based on vapor grown carbon fiber (VGCF) were fabricated for analysis of thermophysical properties. Due to the highly graphitic nature of VGCF, the resulting composites exhibit values of thermal conductivity that have not been achieved by using any other carbon fibers, and thus represent new materials for thermal management in applications such as packaging for high-power, high-density electronic devices. In the aluminum matrix VGCF composites, a thermal conductivity of 642 W/m-K was obtained by using a VGCF loading of only 36.5 vol.%. For VGCF/C composites, thermal conductivity of 910 W/m-K has been observed, a value which is more than a factor of two higher than that of copper. Based on the observed thermal conductivity of VGCF/Al composites and VGCF/C composites, the room temperature thermal conductivity of VGCF in the composite was calculated to be 1460 W/m-K and 1600 W/m-K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zweben, JOM, July, 15-23 (1992).

  2. C. Zweben and K. A. Schmidt, Electronic Materials Handbook, Vol. 1, Packaging, (ASM INTERNATIONAL, Metals Park, OH, 1989).

  3. B. Nysten and J-P. Issi, Composite 21, 339 (1990).

    Article  CAS  Google Scholar 

  4. K. A. Schmidt and C. Zweben, Thermal and Mechanical Behavior of Metal Matrix Composites, edited by L. M. Kennedy, H. H. Morller, and W.S. Johnson (ASTM, Philadelphia, PA, 1989).

    Google Scholar 

  5. D.A. Foster, SAMPE Quarter, August, 58-65 (1989).

  6. W.B. Johnson and B. Sonuparlak, J. Mater. Res. 8, 1169 (1993).

    Article  CAS  Google Scholar 

  7. J. R. Tyler and M. R. van den Bergh, Proc. 3rd Int. SAMPE Electronic Conf., June 20-22, 1989, SAMPE, Pittsburgh, PA, 1989, pp. 1068-1078.

  8. J-M. Ting, M.L. Lake, and D.C. Ingram, Diamond & Related Mater. 2 (5-7), 1069 (1993).

    Google Scholar 

  9. G.G. Tibbetts, Carbon 30 (3), 399 (1992).

    Article  CAS  Google Scholar 

  10. M. Endo and M. Shikata, Ohyo Butsuri 54 507 (1985).

    Google Scholar 

  11. G. G. Tibbetts and D. W. Gorkiewicz, Carbon 31 (7), 1039 (1993).

    Article  CAS  Google Scholar 

  12. M. Katsumata, M. Endo, H. Ushijima, and H. Yamanashi, J. Mater. Res. 9, 841 (1994).

    Article  CAS  Google Scholar 

  13. J. Ting and M.L. Lake, J. Mater. Res. 9, 636 (1994).

    Article  CAS  Google Scholar 

  14. J-M. Ting and M. L. Lake, JOM 36 (3), 23 (1994).

    Article  Google Scholar 

  15. M.L. Lake, J-M. Ting, and J.F. Phillips, Jr., Surf. & Coatings Techno). 62, 367 (1993).

    Article  CAS  Google Scholar 

  16. M. Endo and K. Komaki, Extended Abstracts, 16th Biennial Conference on Carbon, 523 (1983).

  17. A. Mortensen, L.J. Masur, J.A. Cornie, and M.C. Flemings, Metall. Trans. 20A, 2535 (1989).

    Article  CAS  Google Scholar 

  18. A. Mortensen, L.J. Masur, J.A. Cornie, and M.C. Flemings, Metall. Trans. 20A, 2549 (1989).

    Google Scholar 

  19. E. Klier, A. Mortensen, J.A. Cornie, and M.C. Flemings, J. Mater. Sci., July (1990).

  20. R.E. Taylor, Thermophysical Properties Research Lab. Rep. #181A, Purdue University, July (1985).

  21. CRC Handbook of Chemistry and Physics, edited by D. R. Lide, 73rd ed. (CRC Press, Ann Arbor, MI, 1992).

    Google Scholar 

  22. L. Piraux, B. Nystem, A. Haquenne, J-P. Issi, M.S. Dresselhaus, and M.S. Endo, Solid State Commun. 50, 697 (1984).

    Article  CAS  Google Scholar 

  23. J. Heremans, I. Rahim, and M. S. Dresselhaus, Phys. Rev. B 32, 6742 (1985).

    Article  CAS  Google Scholar 

  24. J. Heremans and C.P. Beetz, J. Phys. Rev. B 32, 1981 (1985).

    Article  CAS  Google Scholar 

  25. G.G. Tibbetts, M. Endo, and C.P. Beetz, Jr., SAMPE J. 22-5, Sept./Oct. (1986).

  26. B.D. Agarwal and L.J. Broutman, Analysis and Performance of Fiber Composites (John Wiley, New York, 1980).

    Google Scholar 

  27. R. E. Taylor and B. H. Kelsic, J. Heat Trans. 108, 161, Feb. (1986).

  28. M. S. Dresselhaus, G. D. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg, Graphite Fibers and Filaments (Springer-Verlag, New York, 1988).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, JM., Lake, M.L. & Duffy, D.R. Composites based on thermally hyper-conductive vapor grown carbon fiber. Journal of Materials Research 10, 1478–1484 (1995). https://doi.org/10.1557/JMR.1995.1478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.1478

Navigation