Skip to main content
Log in

Effects of implantation temperature on the structure, composition, and oxidation resistance of aluminum-implanted SiC

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

α-SiC crystals were implanted with aluminum to a high dose at room temperature or 800 °C. Transmission electron microscopy showed that SiC was amorphized by room temperature implantation but remained crystalline after 800 °C implantation. Crystalline aluminum carbide was formed and aluminum redistribution took place in SiC implanted at 800 °C. Implanted and unimplanted crystals were oxidized in 1 atm flowing oxygen at 1300 °C. Amorphization led to accelerated oxidation of SiC. The oxidation resistance of SiC implanted at 800 °C was comparable with that of pure SiC. The oxidation layers formed on SiC implanted at both temperatures consisted of silica embedded with mullite precipitates. The phase formation during implantation and oxidation is consistent with thermodynamic predictions. The results from our current and earlier studies suggest that there exists an optimum range of implantation temperature, probably above 500 °C but below 800 °C, which preserves the substrate crystallinity and retains the high aluminum dosage, for the enhancement of oxidation resistance of SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Yang, H. Du, M. Libera, S. P. Withrow, L. M. Casas, and R. T. Lareau, in Covalent Ceramics II: Non-Oxides, edited by A. R. Barron, G. S. Fischman, M. A. Fury, and A.F. Hepp (Mater. Res. Soc. Symp. Proc. 327, Pittsburgh, PA, 1994), p. 281.

  2. C. S. Yust and C. J. McHargue, J. Am. Ceram. Soc. 67, 117 (1984).

    Article  Google Scholar 

  3. P.J. Burnett and T.F. Page, J. Mater. Sci. 19, 3524 (1984).

    Article  CAS  Google Scholar 

  4. T. Hioki, A. Itoh, M. Ohkubo, S. Noda, H. Doi, J. Kawamoto, and O. Kamigaito, J. Mater. Sci. 21, 1328 (1986).

    Article  Google Scholar 

  5. P.J. Burnett and T. F. Page, in Science of Hard Materials, edited by E.A. Almond (Adam Hilger, London, 1986), p. 789.

    Google Scholar 

  6. P.J. Burnett and T.F. Page, Radiat. Eff. 97, 283 (1986).

    Article  CAS  Google Scholar 

  7. C. J. McHargue, G. C. Farlow, C. W. White, J. M. Williams, B. R. Appleton, and H. Naramoto, Mater. Sci. Eng. 69, 123 (1985).

    Article  CAS  Google Scholar 

  8. I.L. Singer, Surf. Coating Technol. 33, 487 (1987).

    Article  CAS  Google Scholar 

  9. I. L. Singer, R. G. Vardiman, and C. R. Gossett, in Fundamentals of Beam-Solid-Interactions and Transient Thermal Processing, edited by M.J. Aziz, L.E. Rehn, and B. Stritzker (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 201.

  10. I.L. Singer and J.H. Wandass, Structure-Property Relationships in Surface-Modified Ceramics, edited by C. J. McHargue (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989), p. 199.

    Chapter  Google Scholar 

  11. H. Du, Z. Yang, M. Libera, D. Jacobson, Y.C. Wang, and R.F. Davis, J. Am. Ceram. Soc. 76, 330 (1993).

    Article  CAS  Google Scholar 

  12. H. Du, Z. Yang, M. Libera, Y. C. Wang, and R. F. Davis, J. Mater. Sci. Lett. (1995, in press).

  13. Ion Beam Profile Code, Version 3.20, Implant Science Corp. (1992).

  14. H.G. Bohn, J.M. Williams, C.J. McHargue, and G.M. Begun, J. Mater. Res. 2, 107 (1987).

    Article  CAS  Google Scholar 

  15. C.J. McHargue and J.M. Williams, Nucl. Instrum. Methods B 80/81, 889 (1993).

    Article  Google Scholar 

  16. V. Heera, R. Kogler, W. Skorupa, and J. Stoemenos, in Diamond, SiC and Nitride Wide Bandgap Semiconductors, edited by C. H. Carter, Jr., G. Gildenblat, S. Nakamura, and R.J. Nemanich (Mater. Res. Soc. Symp. Proc. 339, Pittsburgh, PA, 1994).

  17. HSC Chemistry for Windows, Version 2.0, Outokumpu Research Oy, May, 1994.

  18. JANAF Thermochemical Tables, 2nd ed., edited by D.R. Stall, H. Prophet, J. Chao, A.T. Hu, E.W. Phillips, G.C. Karris, S.K. Wollert, S. Levine, J.L. Curnutt, J. A. Rizos, B.H. Justice, F. L. Oetting, A. N. Syverud, T. E. Dergazarian, A. C. Swanson, D. U. Webb, L. A. DuPlessis, H. K. Unger, R. S. Orehotsky, R. V. Petrella, S. T. Hadden, and G. C. Sinke (U.S. Dept. of Commerce, National Bureau of Standards, Washington, DC, 1970).

  19. C. J. McHargue, M. B. Lewis, J. M. Williams, and B. R. Appleton, Mater. Sci. Eng. 69, 391 (1985).

    Article  CAS  Google Scholar 

  20. H. Du, M. Libera, Z. Yang, P.J. Lai, D. Jacobson, Y.C. Wang, and R.F. Davis, Appl. Phys. Lett. 62, 423 (1993).

    Article  CAS  Google Scholar 

  21. G. Dearnaley, Nucl. Instrum. Methods 182, 899 (1981).

    Article  Google Scholar 

  22. I.L. Singer, S. Fayeulle, P.D. Ehni, and R.G. Vardiman, Appl. Phys. Lett. (1995, in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Du, H., Libera, M. et al. Effects of implantation temperature on the structure, composition, and oxidation resistance of aluminum-implanted SiC. Journal of Materials Research 10, 1441–1447 (1995). https://doi.org/10.1557/JMR.1995.1441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.1441

Navigation