Skip to main content
Log in

A model of diffusion/viscous mass transport in silicates during liquid-phase sintering

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The model of capillary transport of liquid metals driven by shear stress resulting from the displacement of menisci [J.W. Nowok, Scripta Metal]. Mater. 29, 931 (1993); Acta Metall. Mater. 42, 4025 (1994)] is applicable to liquid-phase sintering of silicate/aluminosilicate glasses. The movement of a liquid phase between adjacent particles is compared with that in capillaries. It appears that the transport property of intergranular melt may be expressed by the viscosity (η) and volume diffusion (D) parameters if mean displacement of menisci is compared with the mean diffusive jump lengths of atoms/molecules (L). This leads to the following relation: (γ/η)Lα = D cap, where α and D cap are a specific permeability and volume diffusion coefficient. The use of this model requires the assumption that the diffusing species are also the viscous flow units, and they can be either atoms or structural units. This assumption seems to be applicable for depolymerized silicate melts if the dominant mass transport is initiated by the diffusion of both nonbridging oxygen and silicon atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Nowok, Scripta Metall. Mater. 29, 931 (1993).

    Article  CAS  Google Scholar 

  2. J. W. Nowok, Acta Metall. Mater. 42, 4025 (1994).

    Article  CAS  Google Scholar 

  3. O-H. Kwon, in Ceramic and Glasses, edited by S. J. Schneider, Jr. (ASM INTERNATIONAL, Materials Park, OH, 1991), Vol. 4, p. 285.

    Google Scholar 

  4. J. W. Nowok, S. A. Benson, M. L. Jones, and D. P. Kalmanovitch, Fuel 69, 1020 (1990).

    Article  CAS  Google Scholar 

  5. R. F. Cooper, J. Geophys. Res. 95, 6979 (1990).

    Article  Google Scholar 

  6. A. Navrotsky, K. L. Geisenger, P. McMillan, and G. V. Gibbs, Phys. Chem. Minerals 11, 284 (1985).

    Article  CAS  Google Scholar 

  7. N. F. Mott, Philos. Mag. B56, 257 (1987).

    Article  Google Scholar 

  8. L. Ferrari, N. F. Mott, and G. Russo, Philos. Mag. 59, 263 (1989).

    Article  Google Scholar 

  9. S. B. Liu, J. E. Stebbins, E. Schneider, and A. Pines, Geochim. Cosmochim. Acta 52, 527 (1988).

    Article  CAS  Google Scholar 

  10. T. Dunn, Geochim. Cosmochim. Acta 46, 2293 (1982).

    Article  CAS  Google Scholar 

  11. T. Dunn, in Silicate Melts, edited by C. M. Scarfe, Short Course Handbook, May 1986 (Mineralogical Association of Canada, 1986), Vol. 12, p. 57.

    Google Scholar 

  12. H. A. Schaffer, J. Non-Cryst. Solids 67, 19 (1984).

    Article  Google Scholar 

  13. F. F. Lange, J. Am. Ceram. Soc. 65, C-33 (1982).

    Article  Google Scholar 

  14. V. Smolej, J. Am. Ceram. Soc. 66, C-33 (1983).

    Article  Google Scholar 

  15. R. M. German, J. Am. Ceram. Soc. 69, C-40 (1986).

    Article  Google Scholar 

  16. T. K. Chaki, Philos. Mag. 62, 465 (1990).

    Article  Google Scholar 

  17. J. W. Nowok, S. A. Benson, E. N. Steadman, and D. W. Brekke, Fuel 72, 1055 (1993).

    Article  CAS  Google Scholar 

  18. R. F. Cooper and D. L. Kohlstedt, J. Geophys. 91, 9315 (1986).

    Article  Google Scholar 

  19. N. P. Bansal and R. H. Doremus, in Handbook of Glass Properties (Academic Press, Orlando, FL, 1986).

    Google Scholar 

  20. Y. Oishi, R. Terai, and H. Ueda, in Mass Transport Phenomena in Ceramics, edited by A. Cooper and A. Heuer (Plenum Press, New York, 1975), p. 297.

    Book  Google Scholar 

  21. D. Gupta, in Diffusion Phenomena in the Thin Films and Microelectronic Materials, edited by D. Gupta and P. S. Ho (Noyes Publication, Park Ridge, NJ, 1988), p. 1.

    Google Scholar 

  22. M. Sasabe and K. Goto, Metall. Trans. 5, 2225 (1974).

    Article  CAS  Google Scholar 

  23. J. W. Nowok, unpublished data.

  24. G. H. Frischat, Ionic Diffusion in Oxide Glasses (Trans Tech. Publ., Bay Village, OH, 1975), p. 136.

    Google Scholar 

  25. J. Henderson, L. Yang, and G. Derge, Trans. Metall Soc. AIME 221, 56 (1961).

    CAS  Google Scholar 

  26. M. P. Ryan and J. K. Blevins, U. S. Geol. Survey Bull., 1764 (1987).

    Google Scholar 

  27. T. Uchino, T. Sakka, Y. Ogata, and M. Iwasaki, J. Non-Cryst. Solids 146, 26 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowok, J.W. A model of diffusion/viscous mass transport in silicates during liquid-phase sintering. Journal of Materials Research 10, 401–404 (1995). https://doi.org/10.1557/JMR.1995.0401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0401

Navigation