Skip to main content
Log in

Growth kinetics, phase transitions, and cracking in cholesterol gallstones

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The growth kinetics of cholesterol gallstones have been studied by growing crystals from melted gallstones. The resulting microstructures are spherulitic which is essentially the same as the structures seen in natural gallstones prior to melting. The cholesterol crystals when observed in hot stage microscopy emerge from a unique nucleation center growing radially in the [001] direction with constant rate. The DSC thermograph of a natural gallstone is initially similar to that of cholesterol monohydrate. Upon melting, cholesterol monohydrate changes to anhydrous cholesterol; both forms are crystalline and exhibit polymorphic transformations. Synthetic stones grown from cholesterol were anhydrous and have a phase change at temperatures close to human body temperature. Optical microscopy established that this phase transformation cracks the spherulitic crystals perpendicular to the fast growth direction. Thermal expansion measurements demonstrate that upon heating, the low density, low temperature phase is transformed to a high density phase. This phase transformation and repeated cracking may prove to be useful in destroying natural gallstones, while suppressing this transformation and its associated cracking might aid in securing other solid cholesterol deposits within the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag, New York, 1981).

    Book  Google Scholar 

  2. R. Skalak and S. Chien, Handbook of Bioengineering (McGraw-Hill, New York, 1987).

    Book  Google Scholar 

  3. G. F. Gibbons, K. A. Mitropoulos, and N. B. Myant, Biochemistry of Cholesterol (Elsevier Biomedical Press, Amsterdam, 1982).

    Google Scholar 

  4. M. Esfahani and J. B. Swaney, Advances in Cholesterol Research (The Telford Press, Philadelphia, PA, 1990).

    Google Scholar 

  5. D. Kritchevsky, Cholesterol (John Wiley and Sons Inc., New York, 1958).

    Google Scholar 

  6. D. J. Sutor and S. E. Wooley, Gut 12, 55 (1971).

    Article  CAS  Google Scholar 

  7. G. W. Drach, J. Urol. 141, 711 (1989).

    Article  CAS  Google Scholar 

  8. H. L. Spier and K. G. Van Seneden, Steroids 6, 871 (1965).

    Article  CAS  Google Scholar 

  9. K. Van Putte, W. Skoda, and M. Petroni, Chem. Phys. Lipids 2, 361 (1968).

    Article  Google Scholar 

  10. N. N. Petropavlov and N. F. Kostin, Sov. Phys. Crystallogr. 21, 525 (1976).

    Google Scholar 

  11. C. R. Loomis, G. G. Shipley, and D. M. Small, J. Lipid Research 20, 525 (1979).

    Article  CAS  Google Scholar 

  12. A. J. Aho, E. Vilhonen, S. Peltola, and A. Lehtonen, Scand. J. Gastroenterology 20, 901 (1985).

    Article  CAS  Google Scholar 

  13. J. M. Beens, P. M. Bills, and D. Lewis, Gastroenterology 76, 548 (1979).

    Article  Google Scholar 

  14. S. J. Burns, S. M. Gracewski, N. Vakil, and A. R. Basu, Dynamic Failure of Materials: Theory, Experiments and Numerics, edited by H. P. Rossmanith and A. J. Rosakis (Elsevier Applied Science, New York, 1991), pp. 114–126.

    Google Scholar 

  15. A. R. Basu, unpublished results.

  16. S. Kumar and S. J. Burns, J. Mater. Sci.: Mater. in Medicine 4, 460 (1993).

    CAS  Google Scholar 

  17. F. M. Konikoff, D. S. Chung, J. M. Donovan, D. M. Small, and M. C. Carvey, J. Clin. Invest. 90, 1155 (1992).

    Article  CAS  Google Scholar 

  18. N. Vakil and E. C. Everbach, Gastroenterology 101, 1628 (1991).

    Article  CAS  Google Scholar 

  19. J. Schultz, Polymer Materials Science (Prentice Hall, Englewood Cliffs, NJ, 1974), p. 155.

    Google Scholar 

  20. H. D. Keith and F. J. Padden, J. Polymer Sci. 39, 101 (1959).

    Article  CAS  Google Scholar 

  21. A. Keller and H. H. Wills, J. Polymer Sci. 39, 151 (1959).

    Article  CAS  Google Scholar 

  22. H. S. Shieh, L. G. Hoard, and C. E. Nordman, Nature 267, 287 (1977).

    Article  Google Scholar 

  23. J. W. Goodby, J. Mater. Chem. 1, 307 (1991).

    Article  CAS  Google Scholar 

  24. I. Nudelman, J. Cryst. Growth 130, 1 (1993).

    Article  CAS  Google Scholar 

  25. Y. Wada, H. Igimi, and K. Uchida, Thermochim. Acta 210, 233 (1992).

    Article  CAS  Google Scholar 

  26. H. Bogren and K. Larsson, Biochim. Biophys. Acta 75, 65 (1963).

    Article  CAS  Google Scholar 

  27. W. Eprecht, H. Rosenmund, and H. R. Schinz, Fortschr. Gebiete Roengenstrahlen Nuklearmed. 79, 1 (1953).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Burns, S.J. & Blanton, T.N. Growth kinetics, phase transitions, and cracking in cholesterol gallstones. Journal of Materials Research 10, 216–224 (1995). https://doi.org/10.1557/JMR.1995.0216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0216

Navigation