Skip to main content
Log in

Shock compression of graphite materials bearing different microtextures and their relations to diamond transition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microtexture dependence of diamond transition in starting graphite materials under shock compression was examined, taking account of two critical points. (i) As the starting materials, several different graphite materials, each of which possesses homogeneous microtexture throughout the material, were used. (ii) In order to distinguish the effect of the microtexture from that of other external conditions, an advanced technique that made the pressure-temperature condition common for the individual materials was developed. Four graphite materials, a glassy carbon, two types of carbon black, and artificial graphite foil, were selected and characterized in detail by x-ray diffractometry, Raman spectroscopy, transmission electron microscopy (TEM), and electron energy-loss spectroscopy (EELS) prior to the shock loading. Shock compressions were performed for the materials, changes in the microtexture and transformed products of the recovered samples were characterized by TEM and EELS, and the effect of the microtexture on the transition to diamond was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. DeCalri and J. C. Jamieson, Science 133, 1821 (1961).

    Article  Google Scholar 

  2. D. J. Erskine and W. J. Nellis, Nature 349, 317 (1991).

    Article  CAS  Google Scholar 

  3. M. Yoshida and N. N. Thadahani, in Shock Compression of Condensed Matter, edited by S. C. Schmidt, R. D. Dick, F. W. Forbes, and D. G. Tasker (Elsevier Science Publication, New York, 1991), p. 585.

    Google Scholar 

  4. L. F. Trueb, J. Appl. Phys. 39, 4707 (1968).

    Article  CAS  Google Scholar 

  5. R. E. Hanneman, H. M. Strong, and F. P. Bundy, Science 46, 3437 (1967).

    Google Scholar 

  6. D. G. Morris, J. Appl. Phys. 51, 2059 (1980).

    Article  CAS  Google Scholar 

  7. N. Setaka and Y. Sekikawa, J. Mater. Sci. Lett. 16, 1728 (1981).

    CAS  Google Scholar 

  8. K. Kondo, S. Soga, A. Sawaoka, and M. Araki, J. Mater. Sci. 20, 1033 (1985).

    Article  CAS  Google Scholar 

  9. H. Hirai and K. Kondo, Science 253, 772 (1991).

    Article  CAS  Google Scholar 

  10. H. Hirai, K. Kondo, and T. Ohwada, Carbon 31, 1095 (1993).

    Article  CAS  Google Scholar 

  11. H. Hirai, K. Kondo, N. Yoshizawa, and M. Shiraishi, Appl. Phys. Lett. 64, 1797 (1994).

    Article  CAS  Google Scholar 

  12. H. Hirai, K. Kondo, and T. Ohwada, Carbon 32 (1995, in press).

    Google Scholar 

  13. D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  14. R. E. Franklin, Acta Crystallogr. 4, 253 (1951).

    Article  CAS  Google Scholar 

  15. P. Lespade, A. Machand, M. Couzi, and F. Cruege, Carbon 22, 375 (1984).

    Article  CAS  Google Scholar 

  16. Los Alamos Science Laboratory Shock Hugoniot Data, edited by S. P. Marsh (University of California, Berkeley, CA, 1980).

  17. A. Onodera, K. Higashi, and Y. Irie, J. Mater. Sci. 23, 422 (1988).

    Article  CAS  Google Scholar 

  18. A. Onodera, Y. Irie, and K. Higashi, J. Appl. Phys. 69, 2611 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H., Ohwada, T. & Kondo, K. Shock compression of graphite materials bearing different microtextures and their relations to diamond transition. Journal of Materials Research 10, 175–182 (1995). https://doi.org/10.1557/JMR.1995.0175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0175

Navigation