Skip to main content
Log in

The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural transformation of polycrystalline Si induced by high energy ball milling has been studied. The structure and property characteristics of the milled powder have been investigated by x-ray diffraction, scanning electron microscopy, high-resolution electron microscopy, differential scanning calorimetry, Raman scattering, and infrared absorption spectroscopy. Two phase amorphous and nanocrystalline Si has been produced by ball milling of polycrystalline elemental Si. The nanocrystalline components contain some defects such as dislocations, twins, and stacking faults which are typical of defects existing in conventional coarse-grained polycrystalline materials. The volume fraction of amorphous Si is about 15% while the average size of nanocrystalline grains is about 8 nm. Amorphous elemental Si without combined oxygen can be obtained by ball milling. The distribution of amorphous Si and the size of nanocrystalline Si crystallites is not homogeneous in the milled powder. The amorphous Si formed is concentrated near the surface of milled particles while the grain size of nanocrystalline Si ranges from 3 to 20 nm. Structurally, the amorphous silicon component prepared by ball milling is similar to that obtained by ion implantation or chemical vapor deposition. The amorphous Si formed exhibits a crystallization temperature of about 660 °C at a heating rate of 40 K/min and crystallization activation energy of about 268 kJ/mol. Two possible amorphization mechanisms, i.e., pressure-induced amorphization and crystallite-refinement-induced amorphization, are proposed for the amorphization of Si induced by ball milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. L. Johnson, Prog. Mater. Sci. 30, 81 (1986).

    Article  CAS  Google Scholar 

  2. R. B. Schwarz and C. C. Koch, Appl. Phys. Lett. 49, 146 (1986).

    Article  CAS  Google Scholar 

  3. C. C. Koch, Nanostructured Mater. 2, 109 (1993).

    Article  CAS  Google Scholar 

  4. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  5. R. W. Siegel, Annu. Rev. Mater. Sci. 21, 559 (1991).

    Article  CAS  Google Scholar 

  6. J. Eckert, J. C. Holzer, C. E. Krill, III, and W. L. Johnson, J. Mater. Res. 7, 1751 (1992).

    Article  CAS  Google Scholar 

  7. Y. Hamakawa, in Materials Issues in Microcrystalline Semiconductors, edited by P. M. Fauchet, K. Tanaka, and C. C. Tsai (Mater. Res. Soc. Symp. Proc. 164, Pittsburgh, PA, 1990), p. 291.

    Google Scholar 

  8. T. D. Shen, W. Q. Ge, K. Y. Wang, M. X. Quan, J. T. Wang, and W. D. Wei, Nanostructured Mater. (in press).

  9. E. Gaffet and M. Harmelin, J. Less-Comm. Met. 157, 201 (1990).

    Article  CAS  Google Scholar 

  10. B. B. Bokhonov, I. G. Konstanchuk, and V. V. Boldyrev, J. Alloy Comp. 191, 239 (1993).

    Article  CAS  Google Scholar 

  11. E. Gaffet, Mater. Sci. Eng. A 136, 161 (1991).

    Article  Google Scholar 

  12. G. J. Thomas, R. W. Siegel, and J. A. Eastman, Scripta Metall. Mater. 24, 201 (1990).

    Article  CAS  Google Scholar 

  13. D. X. Li, D. H. Ping, H. Q. Ye, X. Y. Qin, and X. J. Wu, Mater. Lett. 18, 29 (1993).

    Article  CAS  Google Scholar 

  14. A. Guinier, X-ray Diffraction (Freeman, San Francisco, CA, 1963), p. 124.

    Google Scholar 

  15. J. M. Poate, Nucl. Instrum. Methods 209/210, 211 (1983).

    Article  Google Scholar 

  16. N. Nagasima and N. Kubota, J. Vac. Sci. Technol. 14, 54 (1977).

    Article  CAS  Google Scholar 

  17. E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate, and D. C. Jacobson, J. Appl. Phys. 57, 1795 (1985).

    Article  CAS  Google Scholar 

  18. S. Roorda, S. Doorn, W. C. Sinke, P. M. L. O. Scholte, and E. van Loenen, Phys. Rev. Lett. 62, 1880 (1989).

    Article  CAS  Google Scholar 

  19. H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Metall. Trans. 21A, 2333 (1990).

    Article  CAS  Google Scholar 

  20. E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate, and D. C. Jacobson, Appl. Phys. Lett. 42, 698 (1983).

    Article  CAS  Google Scholar 

  21. H. E. Kissinger, J. Res. Natl. Bur. Stand. 57, 217 (1956).

    Article  CAS  Google Scholar 

  22. U. Köster, Adv. Colloid Interface Sci. 10, 129 (1979).

    Article  Google Scholar 

  23. K. Zellama, P. Germain, S. Squelard, J. C. Bourgoin, and P. A. Thomas, J. Appl. Phys. 50, 6995 (1979).

    Article  CAS  Google Scholar 

  24. Z. Iqbal and S. Veprek, J. Phys. C 15, 377 (1982).

    Article  CAS  Google Scholar 

  25. J. E. Smith, Jr., M. H. Brodsky, B. L. Crowder, M. I. Nathan, and A. Pinczuk, Phys. Rev. Lett. 26, 642 (1971).

    Article  CAS  Google Scholar 

  26. R. Shuker and R. W. Gammon, Phys. Rev. Lett. 25, 222 (1970).

    Article  CAS  Google Scholar 

  27. P. M. Fauchet and I. H. Campbell, CRC Crit. Rev. Solid State Mater. Sci. 14 (Suppl. 1), S79 (1988).

    Google Scholar 

  28. R. J. Nemanich, E. C. Buchler, Y. M. Legrice, R. E. Shroder, G. N. Parsons, C. Wang, G. Lucovsky, and J. B. Boyce, J. Non-Cryst. Solids 114, 813 (1989).

    Article  CAS  Google Scholar 

  29. M. Nakamura, Y. Mochizuki, K. Usami, Y. Itoh, and T. Nozaki, Solid State Commun. 50, 1079 (1984).

    Article  CAS  Google Scholar 

  30. I. J. Lin and S. Nadiv, Mater. Sci. Eng. 39, 193 (1979).

    Article  CAS  Google Scholar 

  31. U. Steinike, B. Muller, and H. P. Henning, Krist. Tech. 14, 1469 (1979).

    Article  CAS  Google Scholar 

  32. E. G. Ponyatovsky and O. I. Barkalov, Mater. Sci. Rep. 8, 147 (1992).

    Article  Google Scholar 

  33. D. R. Maurice and T. H. Courtney, Metall. Trans. 21A, 289 (1990).

    Article  CAS  Google Scholar 

  34. D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. F. Cook, and B. J. Hockey, Phys. Rev. Lett. 60, 2156 (1988).

    Article  CAS  Google Scholar 

  35. L. I. Aptekar, Sov. Phys. Dokl. 24, 993 (1979).

    Google Scholar 

  36. J. R. Groza, J. Mater. Eng. Perf. 2, 283 (1993).

    Article  CAS  Google Scholar 

  37. E. Gaffet, N. Malhouroux-Gaffet, M. Abdellaoui, and A. Malchère, La revue de Métallurgie-CIT/Science et Génie des Matériaux Mai, 757 (1994).

    Article  Google Scholar 

  38. S. Veprek, Z. Iqbal, and F-A. Sarott, Philos. Mag. B 45, 137 (1982).

    Article  CAS  Google Scholar 

  39. S. R. Phillpot and D. Wolf, Philos. Mag. A 60, 543 (1989).

    Article  Google Scholar 

  40. J. E. Hilliard, in Stereology, edited by H. Elias (Springer-Verlag, New York, 1967), p. 211.

    Book  Google Scholar 

  41. D. E. Polk and D. S. Boudreaux, Phys. Rev. Lett. 31, 92 (1973).

    Article  CAS  Google Scholar 

  42. F. Wooten and D. Weaire, in Solid State Physics, edited by D. Turnbull and H. Ehrenreich (Academic, New York, 1987), Vol. 40, p. 2.

    Google Scholar 

  43. D. Beeman, R. Tsu, and M. F. Thorpe, Phys. Rev. B 32, 874 (1985).

    Article  CAS  Google Scholar 

  44. J. C. Bean, H. J. Leamy, J. M. Poate, G. A. Rozgonyi, J. P. van der Ziel, and G. K. Celler, J. Appl. Phys. 50, 881 (1979).

    Article  CAS  Google Scholar 

  45. W. Sinke, T. Warabisako, M. Miyao, T. Tokuyama, S. Roorda, and F. W. Saris, J. Non-Cryst. Solids 99, 308 (1988).

    Article  CAS  Google Scholar 

  46. S. Veprek, F-A. Sarott, and Z. Iqbal, Phys. Rev. B 36, 3344 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, T.D., Koch, C.C., McCormick, T.L. et al. The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling. Journal of Materials Research 10, 139–148 (1995). https://doi.org/10.1557/JMR.1995.0139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0139

Navigation