Skip to main content
Log in

Microprobe Raman spectroscopy of TiN coatings oxidized by solar beam heat treatment

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Physical vapor deposited TiN coatings oxidized by solar beam heat treatment in air were examined by microprobe Raman spectroscopy. The Raman spectra of TiN treated at 400 °C indicated incipient oxidation by the presence of anatase TiO2 and additionally showed a broadband feature around the forbidden TiN vibrational mode. Inhomogeneous mixtures of rutile TiO2 and small amounts of anatase polymorph (< 10%) were detected for the treatments at 600 °C only during the initial stage of oxidation. Prolonged treatment at 600 °C resulted in a complete anatase-to-rutile conversion. Rutile was identified as the single product of oxidation of the TiN samples treated at 800 °C. Peak analysis of the rutile spectra revealed no substantial spectral shifts, demonstrating an oxide growth of nearly stoichiometric rutile with an estimated composition in the range of TiO2±0.02. The Raman scattered light intensity could be correlated with the rutile layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Stanley, C. L. Fields, and J. R. Pitts, Adv. Mater. Process. 12, 16 (1990).

    Google Scholar 

  2. A. J. Vazquez, G. P. Rodriguez, and J. de Damborenea, Sol. Energy Mater. 24, 751 (1991).

    Article  CAS  Google Scholar 

  3. M. Franck, B. Blanpain, B. C. Oberlander, J. P. Celis, and J. R. Roos, Sol. Energy Mater. Sol. Cells 31, 401 (1993).

    Article  CAS  Google Scholar 

  4. J. Desmaison, P. Lefort, and M. Billy, Oxid. Met. 13, 203 (1979).

    Article  CAS  Google Scholar 

  5. M. Wittmer, J. Noser, and H. Melchior, J. Appl. Phys. 52, 6659 (1981).

    Article  CAS  Google Scholar 

  6. I. Suni, D. Sigurd, K. T. Ho, and M-A. Nicolet, J. Electrochem. Soc. 130, 1210 (1983).

    Article  CAS  Google Scholar 

  7. S. Taniguchi, T. Shibata, and A. Okada, Mater. Trans. JIM 30, 765 (1989).

    Article  CAS  Google Scholar 

  8. J. Desmaison, P. Lefort, and M. Billy, Oxid. Met. 13, 505 (1979).

    Article  CAS  Google Scholar 

  9. C. A. Melendres, A. Narayanasamy, V. A. Maroni, and R. W. Siegel, J. Mater. Res. 4, 1246 (1989).

    Article  CAS  Google Scholar 

  10. J. C. Parker and R. W. Siegel, J. Mater. Res. 5, 1246 (1990).

    Article  CAS  Google Scholar 

  11. J. C. Parker and R. W. Siegel, Appl. Phys. Lett. 57, 943 (1990).

    Article  CAS  Google Scholar 

  12. Jandel Scientific PeakFit, version 3.10 (1992).

    Google Scholar 

  13. S. P. S. Porto, P. A. Fleury, and T. C. Damen, Phys. Rev. 154, 522 (1967).

    Article  CAS  Google Scholar 

  14. T. Ohsaka, S. Yamaoka, and O. Shimomura, Solid State Commun. 30, 345 (1979).

    Article  CAS  Google Scholar 

  15. W. T. Pawlewicz, G. J. Exarhos, and W. E. Conaway, Appl. Optics 22, 1837 (1983).

    Article  CAS  Google Scholar 

  16. P. Merle, J. Pascual, J. Camassel, and H. Mathieu, Phys. Rev. B 21, 1617 (1980).

    Article  CAS  Google Scholar 

  17. V. A. Maroni, J. Phys. Chem. Solids 49, 307 (1988).

    Article  CAS  Google Scholar 

  18. R. J. Nemanich, C. C. Tsai, and G. A. N. Connell, Phys. Rev. Lett. 44, 273 (1980).

    Article  CAS  Google Scholar 

  19. R. Merlin and T. A. Perry, Appl. Phys. Lett. 45, 852 (1984).

    Article  CAS  Google Scholar 

  20. K. H. Rieder and W. Drexel, Phys. Rev. Lett. 34, 148 (1975).

    Article  CAS  Google Scholar 

  21. W. Spengler, R. Kaiser, and H. Bilz, Solid State Commun. 17, 19 (1975).

    Article  CAS  Google Scholar 

  22. C. Ernsberger, J. Nickerson, T. Smith, A. E. Miller, and D. Banks, J. Vac. Sci. Technol. A 4, 2784 (1986).

    Article  CAS  Google Scholar 

  23. H. Z. Wu, T. C. Chou, A. Mishra, D. R. Anderson, J. K. Lampert, and S. C. Gujrathi, Thin Solid Films 191, 55 (1990).

    Article  CAS  Google Scholar 

  24. H. G. Tompkins, J. Appl. Phys. 71, 980 (1992).

    Article  CAS  Google Scholar 

  25. R. J. Capwell, F. Spagnolo, and M. A. DeSessa, Appl. Spectrosc. 26, 537 (1972).

    Article  CAS  Google Scholar 

  26. M. N. Gardos, STLE Tribol. Trans. 31, 427 (1988).

    Article  CAS  Google Scholar 

  27. M. N. Gardos, H-S. Hong, and W. O. Winer, STLE Tribol. Trans. 22, 209 (1990).

    Article  Google Scholar 

  28. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Saxer, Appl. Opt. 28, 3303 (1989).

    Article  CAS  Google Scholar 

  29. P. L. White, G. J. Exarhos, M. Bowden, N. M. Dixon, and D. J. Gardiner, J. Mater. Res. 6, 126 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franck, M., Celis, JP. & Roos, J.R. Microprobe Raman spectroscopy of TiN coatings oxidized by solar beam heat treatment. Journal of Materials Research 10, 119–125 (1995). https://doi.org/10.1557/JMR.1995.0119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0119

Navigation