Skip to main content
Log in

Laser-induced microstructural changes and decomposition of aluminum nitride

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructural changes induced by pulsed laser irradiation in the surface layer of AlN and the initial stage of electroless copper deposition in laser processe specimens have been investigated using transmission electron microscopy (TEM). It was found that a dislocation microstructure is generated by laser processing at laser energy densities of 1.5 J/cm2 or higher. A very sharp change in the dislocation microstructure was seen at a depth of 0.2 to 0.3 μm from the free surface. The dislocation Burgers vector is 〈100〉 and the slip plane is {001}, in agreement with previous reports. AlN was melted and resolidified homo-epitactically from the solid substrate forming a mosaic microstructure with very fine cells having a misorientation of up to 15°. Patches of metallic aluminum were found at the surface of all the specimens irradiated at a laser energy density of 1.5 J/cm2 or higher. Very fine particles of AlN, 20 to 50 nm in diameter, were randomly distributed inside the patches. Immersion of these specimens in an electroless copper bath showed that the electroless solution preferentially etched away aluminum at the Al-AlN interface. At the same time copper islands were deposited in cavities left by AlN particles as well as at the interface with the underlying substrate. These regions are the seeds for further electroless deposition. The TEM observations of laser-induced microstructural changes reported in this paper help to unravel further the mechanisms of adhesion enhancement and surface activation by pulsed laser irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Lowndes, M. DeSilva, M. J. Godbole, A. J. Pedraza, and D. B. Geohegan, in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by B. Braren, J. J. Dubowski, and D. P. Norton (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 191.

    Google Scholar 

  2. H. Esrom, in Chemical Perspectives of Microelectronic Materials II, edited by L. V. Interrante, K. F. Jensen, L. H. Dubois, and M. E. Gross (Mater. Res. Soc. Symp. Proc. 204, Pittsburgh, PA, 1991), p. 457.

    Google Scholar 

  3. H. Esrom, J-Y. Zhang, and A. J. Pedraza, in Photons and Low Energy Particles in Surface Processing, edited by C. I. H. Ashby, J. H. Brannon, and S. W. Pang (Mater. Res. Soc. Symp. Proc. 236, Pittsburgh, PA, 1992), p. 383.

    Google Scholar 

  4. A. J. Pedraza, in Proc. Int. Conf. on Beam Processing of Advanced Materials, edited by J. Singh and S.M. Copley (The Mineral, Metals, and Materials Society, Warrendale, PA, 1993), p. 63.

    Google Scholar 

  5. M. J. DeSilva, A. J. Pedraza, and D. H. Lowndes, J. Mater. Res. 9, 1019 (1994).

    Article  CAS  Google Scholar 

  6. S. Hagege, Y. Ishida, and S. Tanaka, J. Phys. C3, 189 (1988).

    Google Scholar 

  7. P. Delavignette, H. B. Kirkpatrick, and S. Amelinckx, J. Appl. Phys. 32, 1098 (1961).

    Article  CAS  Google Scholar 

  8. A. J. Pedraza, J-Y. Zhang, and H. Esrom, in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by B. Braren, J. J. Dubowski, and D. P. Norton (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 209.

    Google Scholar 

  9. M. J. DeSilva, private communication.

  10. D. H. Lowndes and G. E. Jellison, Jr., in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic Press, New York, 1984), Vol. 23, p. 314.

    Google Scholar 

  11. R. L. Webb, L. C. Jensen, S. C. Langford, and J. T. Dickinson, J. Appl. Phys. 74, 2323 (1993).

    Article  CAS  Google Scholar 

  12. R. L. Webb, L. C. Jensen, S. C. Langford, and J. T. Dickinson, J. Appl. Phys. 74, 2340 (1993).

    Google Scholar 

  13. D. H. Lowndes, M. DeSilva, M. J. Godbole, A. J. Pedraza, T. Thundat, and R. J. Warmack, Appl. Phys. Lett. 64, 1791 (1994).

    Article  CAS  Google Scholar 

  14. M. J. Godbole, A. J. Pedraza, D. H. Lowndes, and E. A. Kenik, J. Mater. Res. 4, 1202 (1989).

    Article  CAS  Google Scholar 

  15. K. M. Taylor and C. Lenie, J. Electrochem. Soc. 107, 308 (1960).

    Article  CAS  Google Scholar 

  16. T. Osaka, T. Asada, E. Nakajima, and I. Koiwa, J. Electrochem. Soc. 135, 2578 (1988).

    Article  CAS  Google Scholar 

  17. M. J. DeSilva, A. J. Pedraza, D. H. Lowndes, and M. J. Godbole, in Electronic Packaging Materials Science VII, edited by R. A. Pollak, P. Børgesen, H. Yamada, and K. F. Jensen (Mater. Res. Soc. Symp. Proc. 323, Pittsburgh, PA, 1994), p. 97.

    Google Scholar 

  18. L. I. Etkina, V. A. Shepelin, E. V. Kasatkin, and V. I. Alfimov, Elektrokhimiya 22, 1371 (1986).

    CAS  Google Scholar 

  19. R. M. Turner and R. W. Whitworth, Philos. Mag. 18, 531 (1968).

    Article  CAS  Google Scholar 

  20. V. F. Petrenko and R. W. Whitworth, Philos. Mag. 41A, 681 (1980).

    Article  Google Scholar 

  21. L. Pauling, in The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Cornell, NY, 1960), p. 98.

  22. J. P. Hirth and J. Lothe, in Theory of Dislocations, 2nd ed. (John Wiley & Sons, New York, 1982), p. 398.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, S., Pedraza, A.J. & Allard, L.F. Laser-induced microstructural changes and decomposition of aluminum nitride. Journal of Materials Research 10, 54–62 (1995). https://doi.org/10.1557/JMR.1995.0054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.0054

Navigation