Skip to main content
Log in

Structural variations in strained crystalline multilayers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present a computer simulation study of thin crystalline multilayers constructed from two fcc solids with differing lattice constants and binding energies. Initially the two solids have the same orientation, and the interface is perpendicular to the common [100] direction. We then minimize the energy of the system at zero temperature or equilibrate it at a finite temperature. Both materials are described by Lennard-Jones interatomic potentials. A novel technique for analyzing local atomic ordering, common neighbor analysis, is used to identify structural characteristics in these systems. As we gradually vary the lattice mismatch between the two solids, several structural changes are observed in the layers of smaller atoms after energy minimization. At a mismatch larger than 14%, the layers transform into the hep structure, while at smaller mismatches extended structural defects are generated. At elevated temperatures, the hcp structure is transformed back to fcc, and the structure defects disappear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jankowski and T. Tsakalakos, Mater. Sci. Eng. B 6, 87 (1990).

    Article  Google Scholar 

  2. S. R. Phillpot and D. Wolf, Scripta Metall. Mater. 24, 1109 (1990).

    Article  CAS  Google Scholar 

  3. J. A. Jaszczak, S.R. Phillpot, and D. Wolf, J. Appl. Phys. 68, 4573 (1990).

    Article  CAS  Google Scholar 

  4. J. A. Jaszczak and D. Wolf, J. Mater. Res. 6, 1207 (1991).

    Article  CAS  Google Scholar 

  5. R. S. Jones, J. A. Slotwinski, and J. W. Mintmire, Phys. Rev. B 45, 13624 (1992).

    Article  CAS  Google Scholar 

  6. M. Imafuku, Y. Sasajima, R. Yamamoto, and M. Doyama, J. Phys. F 16, 823 (1986).

    Article  CAS  Google Scholar 

  7. F. Milstein and B. Farber, Phys. Rev. Lett. 44, 277 (1980).

    Article  CAS  Google Scholar 

  8. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

    Article  CAS  Google Scholar 

  9. K. P. Thakur, Phys. Rev. B 26, 3001 (1982).

    Article  CAS  Google Scholar 

  10. K. Seyoum, K. P. Thakur, and D. Jha, Phys. Status Solidi 167, 495 (1991).

    Article  CAS  Google Scholar 

  11. A. Taiwo, H. Yan, and G. Kalonji, in Materials Theory and Modelling, edited by J. Broughton, P. D. Bristowe, and J. M. Newsam (Mater. Res. Soc. Symp. Proc. 291, Pittsburgh, PA, 1993).

  12. M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  13. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

    Google Scholar 

  14. A.S. Clarke and H. Jónsson, Phys. Rev. E 47, 3975 (1993); D. Faken and H. Jónsson, Comp. Mater. Sci. 2, 279 (1994).

  15. B. W. van de Waals, Phys. Rev. Lett. 67, 3263 (1991).

  16. E.E. Fullerton, I.K. Schuller, F.T. Parker, K.A. Svinarich, G.L. Eesley, R. Bhadra, and M. Grimsditch, J. Appl. Phys. 73, 7370 (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoekstra, J., Yan, H., Kalonji, G. et al. Structural variations in strained crystalline multilayers. Journal of Materials Research 9, 2190–2197 (1994). https://doi.org/10.1557/JMR.1994.2190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.2190

Navigation