Skip to main content
Log in

Micromechanical characterization of chemically vapor deposited ceramic films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, nanoindentation is used to determine Young’s modulus of chemically vapor deposited films consisting of silicon carbide, silicon nitride, boron carbide, boron nitride, and silicon dioxide. Diethylsilane and ditertiarybutylsilane were used as precursors in the synthesis of the silicon-based material, while triethylamine borane complex was used for the boron-based material. The modulus of these films was observed to be dependent on the processing conditions and resulting composition of the deposits. For the silicon carbide, silicon nitride, boron carbide, and boron nitride films, the carbon content in the films was observed to increase significantly with higher deposition temperatures, resulting in a corresponding decrease in values of Young’s modulus. The composition of the silicon dioxide films was near stoichiometry over the investigated deposition temperature range (375–475 °C) with correspondingly small variations in the micromechanical properties. Subsequent annealing of these oxide films resulted in a significant increase in the values of Young’s modulus due to hydrogen and moisture removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Microelectronic Materials and Processes, edited by R. A. Levy (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989).

  2. Handbook of Thin Film Technology, edited by L. M. Maissel and R. Glang (McGraw-Hill Book Co., New York, 1983).

  3. J. M. Grow, R. A. Levy, Y. T. Shi, and R. L. Pfeffer, J. Electrochem. Soc. 140, 851 (1993).

    Article  CAS  Google Scholar 

  4. J.M. Grow, R.A. Levy, M. Bhaskaran, H.J. Boeglin, and R. Shalvoy, J. Electrochem. Soc. 140, 3001 (1993).

    Article  CAS  Google Scholar 

  5. V. Paturi, R. A. Levy, J. M. Grow, and E. Mastromatteo, Materials Research Society, April 27-May 1, 1992, San Francisco, CA.

  6. M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  7. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  8. X. Jiang, K. Reichelt, and B. Stritzker, J. Appl. Phys. 66, 5805 (1989).

    Article  CAS  Google Scholar 

  9. J. A. Taylor, J. Vac. Sci. Technol. A9, 2464 (1991).

    Article  Google Scholar 

  10. R. Kleber, W. Dworschak, J. Gerber, A. Fuchs, T. Putz, J. Scherer, K. Jung, and H. Ehrhardt, Vacuum 41, 1378 (1990).

    Article  CAS  Google Scholar 

  11. X. Jiang, K. Reichelt, and B. Stritzker, J. Appl. Phys. 66, 5805 (1989).

    Article  CAS  Google Scholar 

  12. N. Savvides and T.J. Bell, J. Appl. Phys. 72, 2791 (1992).

    Article  CAS  Google Scholar 

  13. M. Wang, K. Schmidt, K. Reichelt, H. Dimigen, and H. Hübsch, J. Mater. Res. 7, 667 (1992).

    Article  CAS  Google Scholar 

  14. CRC Handbook of Chemistry and Physics, edited by R. C. Weast and M. J. Astle, 60th ed. (CRC Press Inc., Boca Raton, FL, 1982).

  15. H.E. O’Neal and M. A. Ring, Organometallics 7, 1017 (1988).

    Article  Google Scholar 

  16. L. Muehoff, W.J. Choyke, M.J. Bozak, and J.T. Yates, Jr., Appl. Phys. Lett. 60, 2842 (1986).

    Google Scholar 

  17. F. Bozso, L. Muehoff, M. Trenary, W.J. Choyke, and J.T. Yates, Jr., J. Vac. Sci. Technol. 2, 1271 (1984).

    Article  CAS  Google Scholar 

  18. C. Blaauw, J. Electrochem. Soc. 131, 1114 (1984).

    Article  CAS  Google Scholar 

  19. R. Chow, W. A. Lanford, W. Ke-Ming, and R.S. Rosier, J. Appl. Phys. 53, 5630 (1982).

    Article  CAS  Google Scholar 

  20. M. Moriyama, K. Kamata, and I. Tanabe, J. Mater. Sci. 26, 1287 (1991).

    Article  CAS  Google Scholar 

  21. R.A. Levy, J.M. Grow, and G. S. Chakravathy, Chem. Mater. 5 (12), 1710 (1993).

    Article  CAS  Google Scholar 

  22. W. A. Pliskin, in Semiconductor Silicon, edited by H. R. Huff and R. R. Burgess (The Electrochemical Society, Princeton, NJ, 1973), p. 506.

    Google Scholar 

  23. E. Kobeda, M. Kellam, and C.M. Osburn, J. Electochem. Soc. 138, 1846 (1991).

    Article  CAS  Google Scholar 

  24. K. Murase, N. Yabumoto, and Y. Komine, J. Electrochem. Soc. 140, 1722 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grow, J.M., Levy, R.A. Micromechanical characterization of chemically vapor deposited ceramic films. Journal of Materials Research 9, 2072–2078 (1994). https://doi.org/10.1557/JMR.1994.2072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.2072

Navigation