Skip to main content
Log in

Heteroepitaxy of diamond on c-BN: Growth mechanisms and defect characterization

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Diamond films grown on {100}, {111} boron-terminated, and nitrogen-terminated facets of cubic boron nitride (c-BN) single crystals were characterized by Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The evolution of morphology and microstructure of the diamond films at different stages during the growth process were followed by SEM investigation. The results indicate that diamond growth proceeds by nucleation of oriented three-dimensional islands followed by their coalescence. Cross-sectional TEM specimens were prepared from thick (over 10 μm) continuous diamond films grown on {111} boron-terminated surfaces. Selected-area diffraction and high resolution TEM images show that the diamond film has a parallel orientation relationship with respect to the substrate. Characteristic defects, common to diamond films obtained by chemical vapor deposition on other substrates, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. DeVries, General Electric, Tech. Inf. Series, No. 72CRD178, June (1972).

    Google Scholar 

  2. D. C. Harris, Naval Research Reviews XLIV, 3 (1992).

    Google Scholar 

  3. B.L. Jones, Mater. Sci. Eng. B 11, 149 (1992).

    Article  Google Scholar 

  4. M. Geis and J. C. Angus, Sci. Am. 267, 84 (1992).

    Article  CAS  Google Scholar 

  5. M.N. Yoder, Naval Research Reviews XLIV, 17 (1992).

    Google Scholar 

  6. W.G. Eversole, U.S. Patent 3 030187 (1962); U.S. Patent 3 030188 (1962).

  7. J.C. Angus, H.A. Will, and W.S. Stanko, J. Appl. Phys. 39, 2915 (1968).

    Article  CAS  Google Scholar 

  8. B.V. Deryagin, D.V. Fedoseev, B.V. Spitsyn, D.V. Lukyanovich, B. V. Ryabov, and A. V. Lavrentev, J. Cryst. Growth 2, 380 (1968).

    Article  CAS  Google Scholar 

  9. J. C. Angus, N. C. Garner, D. J. Poferl, S. P. Chauhan, T. J. Dyble, and P. Sung, Sin. Almazy 3, 38–40, presented at Int. Conf. on Applications of Synthetic Diamond in Industry, Kiev (1971).

    CAS  Google Scholar 

  10. B.V. Deryagin, B.V. Spitsyn, L.L. Builov, A.A. Klochkov, A. E. Gurodetski, and A. V. Smolyaninov, Dokl. Akad. Nauk SSSR 231, 333 (1976).

    CAS  Google Scholar 

  11. S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, Jpn. J. Appl. Phys., Part 2, 21, L183 (1982).

    Article  Google Scholar 

  12. S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, J. Mater. Sci. 17, 3106 (1982).

    Article  CAS  Google Scholar 

  13. M.W. Geis, H.J. Smith, A. Argoitia, J.C. Angus, G.M. Ma, J.T. Glass, J. Butler, C.J. Robinson, and R. Pryor, Appl. Phys. Lett. 58, 2485 (1991).

    Article  CAS  Google Scholar 

  14. N.R. Parikh, J.D. Hunn, E. McGucken, M.L. Swanson, C. W. White, R. A. Rudder, D. P. Malta, J. B. Posthill, and R. J. Markunas, Appl. Phys. Lett. 61, 3124 (1992).

    Article  CAS  Google Scholar 

  15. J. Narayan, A. R. Srivatsa, M. Peters, S. Yokota, and K. V. Ravi, Appl. Phys. Lett. 53, 1823 (1988).

    Article  CAS  Google Scholar 

  16. B.E. Williams and J.T. Glass, J. Mater. Res. 4, 373 (1989).

    Article  CAS  Google Scholar 

  17. D. G. Jeng, H. S. Tuan, R. F. Salat, and G. J. Fricano, Appl. Phys. Lett. 20, 1868 (1990).

    Google Scholar 

  18. Y. Sato, I. Yashima, H. Fujita, T. Ando, and M. Kamo, in New Diamond Science and Technology, edited by R. Messier, J. T. Glass, J. E. Butler, and R. Roy (Mater. Res. Soc. Symp. Int. Proc. NDST2-C4, Pittsburgh, PA, 1991), p. 371.

  19. P. C. Yang, W. Zhu, and J. T. Glass, J. Mater. Res. 8, 1773 (1993).

    Article  CAS  Google Scholar 

  20. J. F. Prins, in New Diamond Science and Technology, edited by R. Messier, J. T. Glass, J. E. Butler, and R. Roy (Mater. Res. Soc. Symp. Int. Proc. NDST2-C4, Pittsburgh, PA, 1991), p. 386.

  21. W.E. Pickett, Phys. Rev. B 38, 1316 (1988).

    Article  CAS  Google Scholar 

  22. R. Haubner, Refrac. Metals and Hard Mater. 9, 70 (1990).

    CAS  Google Scholar 

  23. S. Koizumi, T. Murakami, T. Inuzuka, and K. Suzuki, Appl. Phys. Lett. 57, 563 (1990).

    Article  CAS  Google Scholar 

  24. M. Yoshikawa, H. Ishida, A. Ishitani, T. Murakami, S. Koizumi, and T. Inuzuka, Appl. Phys. Lett. 57, 428 (1990).

    Article  CAS  Google Scholar 

  25. M. Yoshikawa, H. Ishida, A. Ishitani, S. Koizumi, and T. Inuzuka, Appl. Phys. Lett. 58, 1387 (1991).

    Article  CAS  Google Scholar 

  26. T. Inuzuka, S. Koizumi, and K. Suzuki, Diamond and Related Mater. 1, 175 (1992).

    Article  CAS  Google Scholar 

  27. W. Wang, K. Liao, and J. Gao, Phys. Status Solidi A 128, K83 (1991).

    Article  CAS  Google Scholar 

  28. B.R. Stoner and J.T. Glass, Appl. Phys. Lett. 6, 698 (1992).

    Article  Google Scholar 

  29. A. Argoitia, J. C. Angus, L. Wang, X. I. Ning, and P. Pirouz, J. Appl. Phys. 73, 4305 (1993).

    Article  CAS  Google Scholar 

  30. W. R. L. Lambrecht and B. Segall, Phys. Rev. B 40, 9909 (1989); Phys. Rev. B 41, 5409 (1990).

  31. G.L. Doll, J. A. Sell, C.A. Taylor II, and R. Clarke, Phys. Rev. B 43, 6816 (1991).

    Article  CAS  Google Scholar 

  32. R. Clarke, C.A. Taylor II, G.L. Doll, and T.A. Perry, Diamond and Related Mater. 1, 93 (1992).

    Article  CAS  Google Scholar 

  33. D.J. Kester, K.S. Ailey, R.F. Davis, and K.L. More, J. Mater. Res. 8, 1213 (1993).

    Article  CAS  Google Scholar 

  34. L. Wang, P. Pirouz, A. Argoitia, J. S. Ma, and J. C. Angus, Appl. Phys. Lett. 63, 1336 (1993).

    Article  CAS  Google Scholar 

  35. E. Gheeraert, A. Deneuville, L. Brunei, and J. C. Oberlin, in Proc. 2nd Eur. Conf. Diamond, Diamond-Like and Related Coatings, Nice, France, September, 1991, edited by P. K. Bachmann and A. Matthews (Elsevier Science, Amsterdam, 1992), p. 504.

  36. G-H. M. Ma, Y. H. Lee, and J. T. Glass, J. Mater. Res. 5, 2367 (1990).

    Article  CAS  Google Scholar 

  37. O. Mishima, in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by J. T. Glass, R. Messier, and N. Fujimori (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 543.

  38. J. C. Angus, A. Argoitia, R. Gat, Z. Li, M. Sunkara, L. Wang, and Y. Wang, Philos. Trans. R. Soc. London A 342, 195 (1993).

    Article  CAS  Google Scholar 

  39. G. R. Booker and R. Stickler, J. Appl. Phys. 33, 3281 (1962).

    Article  CAS  Google Scholar 

  40. A. Badzian and T. Badzian, Diamond and Related Mater. 2, 147 (1993).

    Article  CAS  Google Scholar 

  41. F. G. Celli and J. E. Butler, Ann. Rev. Phys. Chem. 42, 643 (1991).

    Article  Google Scholar 

  42. E. Kaxiras, Y. Bar-Yam, J. D. Joannopoulos, and K. C. Pandey, Phys. Rev. B 35, 9625 (1987).

    Article  CAS  Google Scholar 

  43. E. Kaxiras, Y. Bar-Yam, J. D. Joannopoulos, and K. C. Pandey, Phys. Rev. B 35, 9636 (1987).

    Article  CAS  Google Scholar 

  44. R. O. Jones and O. Gunnarsson, Rev. Modern. Phys. 61, 689 (1989).

    Article  CAS  Google Scholar 

  45. O. Brafman, G. Lengyel, and S. S. Mitra, Solid State Commun. 6, 523 (1968).

    Article  CAS  Google Scholar 

  46. W. Zhu, X.H. Wang, B.R. Stoner, G.H.M. Ma, H.S. Kong, M. W. H. Braun, and J. T. Glass, Phys. Rev. B 47, 6529 (1993).

    Article  CAS  Google Scholar 

  47. D. Shechtman, J.L. Hutchison, L.H. Robins, E.N. Farabaugh, and A. Feldman, J. Mater. Res. 8, 473 (1993).

    Article  CAS  Google Scholar 

  48. B. R. Stoner, G. H. M. Ma, S. D. Wolter, and J. T. Glass, Phys. Rev. B 45, 11067 (1992).

    Article  CAS  Google Scholar 

  49. K. Suzuki, M. Ichihara, S. Takeuchi, N. Ohtake, M. Yoshikama, K. Hirabayashi, and N. Kurihara, Philos. Mag. A 65, 657 (1992).

    Article  CAS  Google Scholar 

  50. J. C. Angus, R. W. Hoffman, and P. H. Schmidt, in Proc. First Int. Conf., New Diamond Science and Technology, edited by S. Saito, O. Fukunaga, and M. Yoshikawa (KTK Sci. Press, Tokyo, Japan, 1991), p. 9.

    Google Scholar 

  51. P. B. Hirsch, A. Howrie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals (Butterworths, London, 1967).

    Google Scholar 

  52. J. Hornstra, J. Phys. Chem. Solids 5, 129 (1958).

    Article  CAS  Google Scholar 

  53. S. Matsumoto and Y. Matsui, J. Mater. Sci. 18, 1785 (1983).

    Article  CAS  Google Scholar 

  54. W.R.L. Lambrecht and B. Segall, J. Mater. Res. 7, 696 (1992).

    Article  CAS  Google Scholar 

  55. A. Bourret and J.J. Bacmann, in Proc. JIMIS-4, Trans. Japan Inst. Metals, Suppl. 125 (1986).

    Google Scholar 

  56. M. D. Vaudin, B. Cunningham, and D. G. Ast, Scripta Metall. 17, 191 (1983).

    Article  CAS  Google Scholar 

  57. D. Vlachavas and R. C. Pond, Inst. Phys. Conf. Ser. No. 60, 159 (1981).

    CAS  Google Scholar 

  58. A. M. Papon and M. Petit, Scripta Metall. 19, 391 (1985).

    Article  CAS  Google Scholar 

  59. A. Bourret, L. Billard, and M. Petit, Inst. Phys. Conf. Ser. No. 76, 23 (1985).

    Google Scholar 

  60. A. Mauger, J. C. Bourgoin, G. Allan, M. Lannoo, A. Bourret, and L. Billard, Phys. Rev. B 35, 1267 (1987).

    Article  CAS  Google Scholar 

  61. P. Pirouz and J. Yang, in High Resolution Electron Microscopy of Defects in Materials, edited by R. Sinclair, D. J. Smith, and U. Dahmen (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), p. 173.

  62. A.T. Paxton and A. P. Sutton, Acta Metall. 37, 1693 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argoitia, A., Angus, J.C., Ma, J.S. et al. Heteroepitaxy of diamond on c-BN: Growth mechanisms and defect characterization. Journal of Materials Research 9, 1849–1865 (1994). https://doi.org/10.1557/JMR.1994.1849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1849

Navigation