Skip to main content
Log in

Effects of boron on the deformation behavior of Ni3Al

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of boron additions (0 to 4000 wppm B) on the room temperature deformation behavior of Ni-24Al have been examined with both quasi-static deformation and short pulse duration shock loading. Changes in compressive yield strength and hardness with the amount of boron suggest that strengthening effects are more complicated than predicted by usual interstitial solid-solution strengthening considerations. The nature of the dislocations changes from SISF-dissociated superdislocations in the Ni-24Al base alloy to APB-dissociated dislocations with the additions of small amounts of boron. Therefore, the observed variation in strength with boron additions reflects a solid-solution strengthening contribution from the interstitial boron coupled with a “softening” effect arising from the greater mobility of the APB-bounding partials relative to the SISF-bounding partials. It is suggested that this “softening” is a necessary prerequisite for enhanced ductility in Ni3Al. In addition, the grain boundary fracture strength must be increased by boron additions. While this may occur through an increased grain boundary cohesive strength due to boron segregation, it is also expected that the interaction of the dislocations with the grain boundaries will be significantly altered as the nature of the dislocations changes. The lack of a “boron effect” in Ni-25Al, the so-called stoichiometric effect, can be attributed to a diminished “softening”, combined with the rapid solid-solution strengthening observed in this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Takasugi, E. George, D.P. Pope, and O. Izumi, Scripta Metall. 19, 551 (1985).

    Article  CAS  Google Scholar 

  2. F. E. Heredia and D. P. Pope, in High Temperature Ordered Intermetallic Alloys III, edited by C. T. Liu, A. I. Taub, N. S. Stoloff, and C.C. Koch (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 287.

  3. E. M. Grala, in Mechanical Properties of Intermetallic Compounds, edited by J. H. Westbrook (John Wiley and Sons, New York, 1960), p. 358.

    Google Scholar 

  4. A. V. Seybolt and J. H. Westbrook, Acta Metall. 12, 449 (1964).

    Article  CAS  Google Scholar 

  5. K. Aoki and O. Izumi, Trans. JIM 19, 203 (1978).

    Article  CAS  Google Scholar 

  6. E. P. George, C. T. Liu, and D. P. Pope, Scripta Metall. 28, 857 (1993).

    Article  CAS  Google Scholar 

  7. K. Aoki and O. Izumi, Nippon Kinzoku Gakkaishi 43, 358, 1190 (1979).

    CAS  Google Scholar 

  8. C.T. Liu, C.L. White, and J. A. Horton, Acta Metall. 33, 213 (1985).

    Article  CAS  Google Scholar 

  9. A. I. Taub, S.C. Huang, and K. M. Chang, Metall. Trans. A 15A, 399 (1984).

    Article  CAS  Google Scholar 

  10. High-Temperature Ordered Intermetallic Alloys, edited by C. C. Koch, C. T. Liu, and N. S. Stoloff (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985).

  11. High-Temperature Ordered Intermetallic Alloys II, edited by N. S. Stoloff, C.C. Koch, C.T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987).

  12. High-Temperature Ordered Intermetallic Alloys III, edited by C. T. Liu, A. I. Taub, N. S. Stoloff, and C. C. Koch (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989).

  13. High-Temperature Ordered Intermetallic Alloys IV, edited by L. A. Johnson, D. P. Pope, and J. O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991).

  14. Viewpoint Set No. 17, Scripta Metall. 25, 1231 (1991).

  15. C. L. White and A. Choudhury, in High-Temperature Ordered Intermetallic Alloys II, edited by N. S. Stoloff, C. C. Koch, C. T. Liu, and O. Izumi (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 427–441.

  16. E. M. Schulson, T. P. Weihs, I. Baker, H. J. Frost, and J. A. Horton, Acta Metall. 34, 1395 (1986).

    Article  CAS  Google Scholar 

  17. T.P. Weihs, V. Zinoviev, D.V. Viens, and E.M. Schulson, Acta Metall. 35, 1109 (1987).

    Article  CAS  Google Scholar 

  18. P. S. Khadkikar, K. Vedula, and B. S. Shabel, Metall. Trans. A 18A, 425 (1987).

    Article  CAS  Google Scholar 

  19. R.J. Kerans, Ph.D. Dissertation, The Ohio State University (1988).

  20. W. Yan, LP. Jones, and R.E. Smallman, Scripta Metall. 21, 1511 (1987).

    Article  CAS  Google Scholar 

  21. T. K. Chaki, Philos. Mag. Lett. 61, 5 (1990).

    Article  CAS  Google Scholar 

  22. I. Baker, B. Huang, and E.M. Schulson, Acta Metall. 36, 493 (1988).

    Article  CAS  Google Scholar 

  23. C.C. Koch, J.A. Horton, C.T. Liu, O.B. Cavin, and J.O. Scarbrough, in Rapid Solidification Processing, Principles and Technologies III, edited by R. Mehrabian (NBS, Washington, DC, 1983), p. 264.

    Google Scholar 

  24. P. V. Mohan Rao, K. Satyanarayana Murthy, S. V. Suryanarayana, and S. V. Nagender Naidu, J. Mater. Res. 8, 741 (1993).

    Article  Google Scholar 

  25. D.E. Mikkola, in Proc. 8th Int. Conf. on High Energy Rate Fabrication, edited by I. Bermen and J. W. Schroeder (ASME, 1984), p. 41.

  26. R.N. Wright and D.E. Mikkola, Metall. Trans. A 16A, 881, 891 (1985).

    Article  CAS  Google Scholar 

  27. J. A. Brusso, R. N. Wright, and D. E. Mikkola, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, edited by L. E. Murr, K. P. Staudhammer, and M.A. Meyers (Marcel Dekker, New York, 1986), p. 403.

    Google Scholar 

  28. M.A. Crimp, B.C. Smith, and D.E. Mikkola, Mater. Sci. Eng. 96, 27 (1987).

    Article  CAS  Google Scholar 

  29. L. Schwartz, in Local Atomic Arrangements Studied by X-Ray Diffraction, edited by J. B. Cohen and J. E. Hilliard (Metallurgical Society Conf., Gordon and Breach, New York, 1966), Vol. 36, p. 140.

  30. International Tables for X-Ray Crystallography (The Kynoch Press, Birmingham, England, 1962), Vol. III.

  31. International Tables for X-Ray Crystallography (The Kynoch Press, Birmingham, England, 1962), Vol. II.

  32. D.E. Mikkola and J.B. Cohen, Acta Metall. 14, 105 (1966).

    Article  CAS  Google Scholar 

  33. R. N. Orava and R. H. Wittman, in Proc. 5th Int. Conf. on High Energy Rate Fabrication (University of Denver, Denver, CO, 1975), p. 1.

    Google Scholar 

  34. P.S. DeCarli and M.A. Meyers, in Shock Waves and High-Strain Rate Phenomena in Metals, edited by M. A. Meyers and L. Murr (Plenum Press, New York, 1981), p. 341.

    Google Scholar 

  35. A.L. Stevens and O.E. Jones, J. Appl. Mech. 29, 359 (1972).

    Article  Google Scholar 

  36. D. J. Borich, Ph.D. Dissertation, Michigan Technological University, Houghton, MI (1973).

  37. B.E. Warren, Prog. Met. Phys. 8, 147 (1959).

    Article  CAS  Google Scholar 

  38. D. E. Mikkola and J. B. Cohen, in Local Atomic Arrangements Studied by X-Ray Diffraction, edited by J. B. Cohen and J. E. Hilliard (Metallurgical Society Conf., Gordon and Breach, New York, 1966), Vol. 36, p. 289.

  39. J. B. Cohen and C. N. J. Wagner, J. Appl. Phys. 33, 2073 (1962).

    Article  CAS  Google Scholar 

  40. S. C. Huang, A. I. Taub, and K. M. Chang, Acta Metall. 32, 1703 (1984).

    Article  CAS  Google Scholar 

  41. N. Masahashi, T. Takasugi, and O. Izumi, Acta Metall. 36, 1823 (1988).

    Article  CAS  Google Scholar 

  42. R. L. Fleischer, in The Strengthening of Metals, edited by D. Peckner (Rhinehold Publishing Corp., New York, 1964), p. 93.

    Google Scholar 

  43. N. F. Mott and F. R. N. Nabarro, in Rep. Conf. on the Strength of Solids (Phys. Soc, London, 1948), p. 1.

    Google Scholar 

  44. K. Ono and R. Stern, Trans. Metall. Soc. AIME 245, 171 (1969).

    CAS  Google Scholar 

  45. N. Masahashi, T. Takasugi, and O. Izumi, Acta Metall. 36, 1815 (1988).

    Article  CAS  Google Scholar 

  46. H. G. Bohn, J. M. Williams, J. H. Barnett, and C. T. Liu, in High-Temperature Ordered Intermetallic Alloys, edited by C. C. Koch, C. T. Liu, and N. S. Stoloff (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 127.

  47. F. W. Arnoth, J. P. Clark, and G. P. Mohanty, J. Appl. Phys. 48, 1771 (1977).

    Article  CAS  Google Scholar 

  48. T. Takasugi, S. Hirakawa, O. Izumi, S. Ono, and S. Watanabe, Acta Metall. 35, 2015 (1987).

    Article  CAS  Google Scholar 

  49. D. M. Wee, D. P. Pope, and V. Vitek, Acta Metall. 32, 829 (1984).

    Article  CAS  Google Scholar 

  50. M. Yamaguchi, V. Vitek, and D. P. Pope, Philos. Mag. A43, 1027 (1981).

    Article  Google Scholar 

  51. M. Yamaguchi, V. Paidar, D.P. Pope, and V. Vitek, Philos. Mag. A45, 867 (1982).

    Article  Google Scholar 

  52. M. Takeyama and C.T. Liu, J. Mater. Res. 3, 665 (1988).

    Article  CAS  Google Scholar 

  53. X. R. Qian and Y.T. Chou, in Intermetallic Compounds-Structure and Mechanical Properties, edited by O. Izumi (The Japan Institute of Metals, Nihon Kinzoku Gakkai, 1991), p. 433.

    Google Scholar 

  54. X. R. Qian and Y. T. Chou, in Interfacial Structure, Properties, and Design, edited by M. H. Yoo, W. A. T. Clark, and C. L. Briant (Mater. Res. Soc. Symp. Proc. 122, Pittsburgh, PA, 1988), pp. 311-316.

  55. X. R. Qian and Y.T. Chou, in High Temperature Ordered Intermetallic Alloys III, edited by C.T. Liu, A.I. Taub, N.S. Stoloff, and C. C. Koch (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), pp. 529–534.

  56. Y. G. Kim, G. W. Yoon, and N. S. Stoloff, J. Mater. Sci. Lett. 4, 1407 (1985).

    Article  CAS  Google Scholar 

  57. J.E. Hack, D.J. Srolovitz, and S.P. Chen, Scripta Metall. 20, 1699 (1986).

    Article  CAS  Google Scholar 

  58. M.J. Mills, Scripta Metall. 23, 2061 (1989).

    Article  CAS  Google Scholar 

  59. M. J. Mills, S. H. Goods, S. M. Foiles, and J. R. Whetstone, Scripta Metall. 25, 1283 (1991).

    Article  CAS  Google Scholar 

  60. R. Armstrong, I. Codd, R. M. Douthwaite, and N. J. Petch, Philos. Mag. 7, 45 (1962).

    Article  CAS  Google Scholar 

  61. T.L. Johnston, R.G. Davies, and N.S. Stoloff, Philos. Mag. 12, 305 (1965).

    Article  CAS  Google Scholar 

  62. Y. Liu, T. Takasugi, O. Izumi, and T. Yamada, Acta Metall. 37, 507 (1989).

    Article  CAS  Google Scholar 

  63. K. Aoki, Mater. Trans. JIM 31, 443 (1990).

    Article  CAS  Google Scholar 

  64. C. L. Briant and A. I. Taub, Acta Metall. 36, 2761 (1988).

    Article  CAS  Google Scholar 

  65. E.P. George and C.T. Liu, J. Mater. Res. 5, 754 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brusso, J.A., Mikkola, D.E. Effects of boron on the deformation behavior of Ni3Al. Journal of Materials Research 9, 1742–1754 (1994). https://doi.org/10.1557/JMR.1994.1742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1742

Navigation