Skip to main content
Log in

Formation and coarsening behavior of Y2BaCuO5 from peritectic decomposition of YBa2Cu3O7−x

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Formation and coarsening behavior of the Y2BaCuO5 (211) phase has been examined in samples produced by peritectic decomposition of pure YBa2Cu3O7−x (123), resulting in 211 crystals and the liquid phase [BaCuO2-CuO]. Through various temperature (1020 °C-1060 °C) and time (0.25 h-10 h) studies, the fundamental coarsening behavior was determined. At 1040 °C, 211 crystals coarsen significantly over a 10 h period. The acicular crystals can be modeled by the diffusional ripening law, rr0 = (Kt)1/3, where r=V1/3. However, the log-normal distributions of the lengths, widths, and volumes for each coarsening run are much wider than general ripening theory would predict. Results from coarsening studies at 1020 °C and 1060 °C for 3 h reveal that the 211 crystal volume increases with increasing superheat. Prior coarsening of the 123 grain size yields much larger 211 particles, suggesting that the 211 crystals must nucleate at the 123 grain boundaries during peritectic decomposition, and this nucleation governs the size of the 211 crystals for short coarsening times. Addition of properitectic 211 (15 mole %) to pure 123 before peritectic decomposition strongly influences the particle habit of the resulting 211 crystals. Without any additions, acicular or needle-like 211 crystals result from the melting of 123. However, when equiaxed properitectic 211 is added to the 123, the resulting 211 is faceted, but still equiaxed. If acicular 211 is added to the starting composition, the resulting 211 is needle shaped. These results will be discussed in terms of 123 melt-texturing and directional solidification processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Taylor, P. Sainamthip, and D. F. Dockery, in High-Temperature Superconductors, edited by M. D. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), pp. 663–666.

  2. S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. van Dover, G.W. Kammlott, R.A. Fastnacht, and H.D. Kieth, Appl. Phys. Lett. 52, 2074–2076 (1988).

    Article  CAS  Google Scholar 

  3. C.A. Bateman, L. Zhang, H.M. Chan, and M.P. Harmer, J. Am. Ceram. Soc. 75, 1281–1283 (1992).

    Article  CAS  Google Scholar 

  4. M. A. Rodriguez, B. J. Chen, and R. L. Snyder, Physica C 195, 185–194 (1992).

    Article  CAS  Google Scholar 

  5. K. Salama, V. Selvamanickam, L. Gao, and K. Sun, Appl. Phys. Lett. 54, 2352–2354 (1989).

    Article  CAS  Google Scholar 

  6. M. Murakami, S. Gotoh, N. Koshizuka, S. Tanaka, T. Matsushita, S. Kambe, and K. Kitazawa, Cryogenics 30, 390–396 (1990).

    Article  CAS  Google Scholar 

  7. P. McGinn, W. Chen, N. Zhu, M. Lanagan, and U. Balachandran, Appl. Phys. Lett. 57, 1455–1457 (1990).

    Article  CAS  Google Scholar 

  8. J. W. Halloran, J. D. Hodge, D. B. Chandler, L. J. Klemptner, M. J. Neal, M.V. Parish, H.D. Park, V.M. Pathare, G. Bakis, and D. Eagles, J. Am. Ceram. Soc. 75 (4), 903–907 (1992).

    Article  CAS  Google Scholar 

  9. M. Neal, D. B. Chandler, L. J. Klemptner, and M. V. Parish, IEEE Transactions, Applied Superconductivity Conference Proceedings 1 (4), 175–177 (1991).

    Article  Google Scholar 

  10. M. Murakami, M. Morita, K. Doi, and K. Miyamoto, Jpn. J. Appl. Phys., Part 1, 28 (7), 1189–1194 (1989).

    Article  CAS  Google Scholar 

  11. P. McGinn, W. Chen. N. Zhu, L. Tan, C. Varanasi, and S. Sengupta, Appl. Phys. Lett. 59, 120–122 (1991).

    Article  CAS  Google Scholar 

  12. M.A. Rodriguez, R.L. Snyder, B.J. Chen, D.P. Matheis, S.T. Misture, V. D. Frechette, G. Zorn, H. E. Gobel, and B. Seebacher, Physica C (in press).

  13. R. Schmid, Metall. Trans. B 14B, 473–481 (1983).

    Article  CAS  Google Scholar 

  14. S. Kawabata, H. Hoshizaki, N. Kawahars, H. Enami, T. Shinohara, and T. Imura, Jpn. J. Appl. Phys., Part 2 letters, 29 (8), L1490–L1492 (1990).

    Article  CAS  Google Scholar 

  15. K. Yamaguchi, M. Murakami, H. Fujimoto, S. Gotoh, N. Koshizuka, and S. Tanaka, Jpn. J. Appl. Phys., Part 2 letters, 29 (8), L1428–L1431 (1990).

    Article  CAS  Google Scholar 

  16. J. Kase, J. Shimoyama, E. Yanagisawa, S. Kondoh, T. Matsubara, T. Morimoto, and M. Suzuki, Jpn. J. Appl. Phys., Part 2 letters, 29 (2), L277–L279 (1990).

    Article  CAS  Google Scholar 

  17. J. Orehotsky, H. Wiesmann, A. R. Moodenbaugh, M. Suenaga, H. G. Wang, and H. Herman, IEEE Trans. Magn. 27 (2), 914–916 (1991).

    Article  CAS  Google Scholar 

  18. L. Zhou, P. Zhang, P. Ji, K. Wang, J. Wang, and X. Wu, IEEE Trans. Magn. 27 (2), 912–913 (1991).

    Article  CAS  Google Scholar 

  19. B. J. Lee and D. N. Lee, J. Am. Ceram. Soc. 74 (1), 78–84 (1991).

    Article  CAS  Google Scholar 

  20. 123 powder lot #03-0200 and 211 powder lot #03-0187 from Seattle Specialty Ceramics Inc., Bothell, WA.

  21. G. Stenstrop and J. Engell, J. Less-Comm. Met. 164 & 165, 200–207 (1990).

    Article  Google Scholar 

  22. W.J. Dixon and F.J. Massey Jr., Introduction to Statistical Analysis, 3rd ed. (McGraw-Hill Publishing, New York, 1969), pp. 63–66.

  23. W. Wong-Ng, JCPDS Grant-in-Aid Report 1987, Powder Diffraction File Card 38–1434.

  24. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  Google Scholar 

  25. C. Wagner, Z. Elektrochem. 65, 581 (1961).

    CAS  Google Scholar 

  26. A. J. Ardell, Acta Metall. 20, 61–71 (1972).

    Article  Google Scholar 

  27. A.J. Ardell, Metall. Trans. 3, 1395–1401 (1972).

    Article  CAS  Google Scholar 

  28. A.J. Ardell, Metallography 5, 285–294 (1972).

    Article  Google Scholar 

  29. P.W. Voorhees and M.E. Glicksman, Acta Metall. 32 (11), 2001–2011 (1984).

    Article  CAS  Google Scholar 

  30. P.W. Voorhees and M.E. Glicksman, Acta Metall. 32 (11), 2013–2030 (1984).

    Article  CAS  Google Scholar 

  31. W. Zhang, K. Osamura, and S. Ochiai, J. Am. Ceram. Soc. 73 (7), 1958–1964 (1990).

    Article  CAS  Google Scholar 

  32. W. Wong-Ng, K. L. Davis, and R. S. Roth, J. Am. Ceram. Soc. 71 (2), C64–C67 (1988).

    CAS  Google Scholar 

  33. W. Wong-Ng, private communication.

  34. D. Shi, S. Sengupta, J.S. Luo, C. Varanasi, and P.J. McGinn, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, M.L., Huffman, R.T. & Halloran, J.W. Formation and coarsening behavior of Y2BaCuO5 from peritectic decomposition of YBa2Cu3O7−x. Journal of Materials Research 9, 1633–1643 (1994). https://doi.org/10.1557/JMR.1994.1633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1633

Navigation