Skip to main content
Log in

A mechanism of CVD diamond film growth deduced from the sequential deposition from sputtered carbon and atomic hydrogen

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We describe a growth mechanism of CVD diamond films consisting of a series of surface reactions. It is derived from experimental observations of a sequential deposition process in which incident carbon flux and atomic hydrogen flux were independently varied. In this sequential process, film growth rate increased with atomic hydrogen exposure, and a saturation in the utilization of carbon was observed. These features are consistent with a surface growth process consisting of the following steps: (i) the carburization of the diamond surface, (ii) the deposition of highly disordered carbon on top of this surface, (iii) the etching of disordered carbon by atomic hydrogen, (iv) the conversion of the carburized diamond surface to diamond at growth sites by atomic hydrogen, and (v) the carburization of newly grown diamond surface. The nature of the growth sites on the diamond surface has not been determined experimentally, and the existence of the carburized surface layer has not been demonstrated experimentally. The surface growth mechanism is the only one consistent with the growth observed in conventional diamond reactors and the sequential reactor, while precluding the necessity of gas phase precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  CAS  Google Scholar 

  2. J. C. Angus and C. C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  3. A. R. Badzian and R. C. DeVries, Mater. Res. Bull. XXIII, 385 (1988).

    Article  Google Scholar 

  4. S.J. Harris and L.R. Martin, J. Mater. Res. 5, 2313 (1990).

    Article  CAS  Google Scholar 

  5. F. G. Celii and J. E. Butler, in New Diamond Science and Technology, edited by R. Messier, J. T. Glass, J. E. Butler, and R. Roy (Mater. Res. Soc. Symp. Int. Proc. NDST-2, Pittsburgh, PA, 1991), p. 201.

  6. M. Frenklach and K. E. Spear, J. Mater. Res. 3, 133 (1988).

    Article  CAS  Google Scholar 

  7. S.J. Harris, Appl. Phys. Lett. 56, 2298 (1990).

    Article  CAS  Google Scholar 

  8. M. Tsuda, M. Nakajima, and S. Oikawa, J. Am. Chem. Soc. 108, 5780 (1986).

    Article  CAS  Google Scholar 

  9. K. V. Ravi and A. Joshi, Appl. Phys. Lett. 58, (3), 246 (1991).

    Article  CAS  Google Scholar 

  10. D.S. Olson, M.A. Kelly, S. Kapoor, and S.B. Hagstrom, in Wide Band Gap Semiconductors, edited by T.D. Moustakas, J. I. Pankove, and Y. Hamakawa (Mater. Res. Soc. Symp. Proc. 242, Pittsburgh, PA, 1992), p. 43.

  11. M.A. Kelly, S. Kapoor, D.S. Olson, and S.B. Hagstrom, in Wide Band Gap Semiconductors, edited by T.D. Moustakas, J. I. Pankove, and Y. Hamakawa (Mater. Res. Soc. Symp. Proc. 242, Pittsburgh, PA, 1992), p. 51.

  12. M. A. Kelly, D. S. Olson, S. Kapoor, and S. B. Hagstrom, Appl. Phys. Lett. 60 (20), 2502 (1992).

    Article  CAS  Google Scholar 

  13. D. S. Olson, M. A. Kelly, S. Kapoor, and S. B. Hagstrom, in Novel Forms of Carbon, edited by C. L. Renschler, J. J. Pouch, and D.M. Cox (Mater. Res. Soc. Symp. Proc. 270, Pittsburgh, PA, 1992), p. 335.

  14. F. Jansen, I. Chen, and M. A. Machonkin, J. Appl. Phys. 66 (12), 5749 (1989).

    Article  CAS  Google Scholar 

  15. J. J. Boland and G. N. Parsons, Science 256, 1304 (1992).

    Article  CAS  Google Scholar 

  16. L. S. Piano, Ph.D. Thesis, Stanford University (1991).

  17. S. P. Chauhan, J. C. Angus, and N. C. Gardner, J. Appl. Phys. 47 (11), 4746 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, D.S., Kelly, M.A., Kapoor, S. et al. A mechanism of CVD diamond film growth deduced from the sequential deposition from sputtered carbon and atomic hydrogen. Journal of Materials Research 9, 1546–1551 (1994). https://doi.org/10.1557/JMR.1994.1546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1546

Navigation