Skip to main content
Log in

A hybrid method for determining material properties from instrumented micro-indentation experiments

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The impact code EPIC was employed to study the relationship between the applied force and the penetration depth in a micrometer-scale indentation experiment with oxygen free high conductivity (OFHC) copper. EPIC is an elastic-plastic finite element code that uses a Lagrangian formulation and triangular mesh, which can accommodate large deformation without the need to remesh during the computation process. By fitting the force-penetration curves for a triangular indenter with second degree polynomials, it was demonstrated that the fit changed with two material constants in the constitutive equation. A systematic procedure for determining the material constants is described that is based on matching either the slope or the curvature of the force penetration depth curves from numerical simulation and experiments. It is concluded that material constants can be determined from indentation data obtained using pyramidal or spherical indenters as well as a flat-ended indenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Newey, M. A. Wilkins, and H. M. Pollock, J. Phys. E. Sci. Instrum. 15, 119–122 (1982).

    Article  CAS  Google Scholar 

  2. J. B. Pethica, R. Hutchings, and W. C. Oliver, Philos. Mag. A 48 (4), 593–606 (1983).

    Article  CAS  Google Scholar 

  3. M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601–609 (1986).

    Article  Google Scholar 

  4. W. C. Oliver and C. J. McHargue, Thin Solid Films 161, 117–122 (1988).

    Article  Google Scholar 

  5. K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, MA, 1985).

    Book  Google Scholar 

  6. R. Hill, B. Storakeis, and A. B. Zdunek, Proc. R. Soc. A 423, 301–333 (1989).

    CAS  Google Scholar 

  7. C. Hardy, C. N. Baronet, and G. V. Tordion, Int. J. Num. Meth. Eng. 3, 451–462 (1971).

    Article  Google Scholar 

  8. C. H. Lee, S. Masaki, and S. Kobayashi, Int. J. Mech. Sci. 14, 417–426 (1972).

    Article  Google Scholar 

  9. P. S. Follansbee and C. B. Sinclair, Int. J. Solids Structures 20 (1), 81–91 (1984).

    Article  Google Scholar 

  10. K. Komvopoulos, Trans. Am. Soc. Mech. Eng., J. Tribology 111, 430–439 (1989).

    Google Scholar 

  11. A. K. Bhattacharya and W. D. Nix, Int. J. Solids Structures 24 (9), 881–891 (1988).

    Article  Google Scholar 

  12. X. Cai, J. Mater. Sci. Lett. 11 (22), 1527–1531 (1992).

    Article  CAS  Google Scholar 

  13. T. A. Laursen and J. C. Simo, J. Mater. Res. 7, 618–626 (1992).

    Article  CAS  Google Scholar 

  14. C. E. Anderson, Int. J. Impact Eng. 5, 33–59 (1987).

    Article  Google Scholar 

  15. G. R. Johnson, Trans. Am. Soc. Mech. Eng., J. Appl. Mechanics 43 (3), 439–444 (1976).

    Article  Google Scholar 

  16. J. L. Loubet, J. M. Georges, and G. Meille, in Microindentation Techniques in Materials Science and Engineering, edited by P. J. Blau and B. R. Lawn (ASTM STP 889, 1985), pp. 72–89.

  17. F. Fröhlich, P. Grau, and W. Grellmann, Phys. Status Solidi A 42, 79–89 (1977).

    Article  Google Scholar 

  18. Y-M. Chen, A. W. Ruff, and J. W. Dally, Proc. Symp. on Contact Problems and Surface Interfaces in Manufacturing and Tribological Systems, ASME Winter Annual Meeting (1993).

    Google Scholar 

  19. G. R. Johnson, AIAA J. 17 (9), 975–979 (1979).

    Article  Google Scholar 

  20. T. Belytschko, Computing in Applied Mechanics, ASME, AMD (1976), Vol. 18, pp. 139–161.

  21. G. R. Johnson, D. D. Colby, and D. J. Vavrick, Int. J. Num. Meth. Eng. 14, 1865–1871 (1979).

    Article  Google Scholar 

  22. G. R. Johnson and W. H. Cook, Proc. 7th Int. Symp. on Ballistics, The Hague, The Netherlands (April, 1983), pp. 541–547.

  23. E. W. Mielnik, Metalworking Science and Engineering (McGraw-Hill, New York, 1991).

    Google Scholar 

  24. C. W. Shih, M. Yang, and J. C. M. Li, J. Mater. Res. 6, 2623–2628 (1991).

    Article  CAS  Google Scholar 

  25. V. A. Lamb, C. E. Johnson, and N. D. R. Valentine, J. Electrochemical Soc. 117 (9), 291–318 (1970).

    Article  Google Scholar 

  26. Y-M. Chen, Ph.D. Dissertation, University of Maryland, College Park, MD (1993).

  27. F. J. Zerilli and R. W. Armstrong, J. Appl. Phys. 5, 1816–1825 (1987).

    Article  Google Scholar 

  28. J. S. Field and M. V. Swain, J. Mater. Res. 8, 297–306 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y.M., Ruff, A.W. & Dally, J.W. A hybrid method for determining material properties from instrumented micro-indentation experiments. Journal of Materials Research 9, 1314–1321 (1994). https://doi.org/10.1557/JMR.1994.1314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1314

Navigation