Skip to main content
Log in

Defect mapping of a synthetic diamond single crystal by cathodoluminescence spectroscopy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cathodoluminescence (CL) spectroscopy in a scanning electron microscope was used to identify and to map the spatial distribution of luminescent defects in a synthetic diamond single crystal. Several defect CL bands were observed in the 1.5-3.5 eV region: (i) a band with a zero-phonon line at 2.156 eV, attributed to a center containing nitrogen and atomic vacancies; (ii) a broadband centered at ∼2.2 eV, tentatively attributed to a boron-containing center; (iii) a doublet line at 2.33 eV, attributed to a nitrogen-containing center; (iv) a zero-phonon line at 2.555 eV, attributed to a nickel-containing center; (v) a broadband centered at ∼2.85 eV, attributed to a dislocation-related center; and (vi) a zero-phonon line at 3.188 eV, attributed to a center containing nitrogen and a carbon interstitial. Lines due to free and acceptor-bound excitons were observed in the 5.0-5.4 eV region. The spatial variation of the CL was examined in the vicinity of regions of relatively high dislocation density (∼106 dislocations cm−2), which had been found in a previous x-ray diffraction imaging experiment. A quantitative analysis was made of the spatial variation of the band intensities. Upon moving from a relatively defect-free region to the center of a high dislocation density region, the intensities of defect bands (i) and (v) increased by very large factors (these bands were observed only within the high dislocation density regions); the intensity of defect band (vi) increased by a factor of ∼2; the acceptor-bound exciton intensity increased by a factor of 1.3; the intensities of defect bands (ii)-(iv) decreased by a factor of ∼2; and the free exciton intensity decreased by a factor of ∼7.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. K. Tanner, X-Ray Diffraction Topography (Pergamon Press, Oxford, 1976).

    Google Scholar 

  2. D. R. Black, H. E. Burdette, and W. E. Banholzer, Diamond and Related Mater. 2, 121 (1993).

    Article  CAS  Google Scholar 

  3. L. H. Robins, L. P. Cook, E. N. Farabaugh, and A. Feldman, Phys. Rev. B 39, 13367 (1989).

    Article  CAS  Google Scholar 

  4. G. Davies, in The Properties of Diamond, edited by J. E. Field (Academic Press, San Diego, CA, 1979), p. 165.

    Google Scholar 

  5. A. T. Collins, in Diamond Materials, edited by A. J. Purdes, J. C. Angus, R. F. Davis, B. M. Meyerson, K. E. Spear, and M. Yoder, Electrochem. Soc. Proc. Vol. 91–8 (The Electrochemical Society, 1991), p. 408.

  6. J. Ruan, K. Kobashi, and W.J. Choyke, Appl. Phys. Lett. 60, 3138 (1992).

    Article  CAS  Google Scholar 

  7. L. H. Robins, E. N. Farabaugh, A. Feldman, and L. P. Cook, Phys. Rev. B 43, 9102 (1991).

    Article  CAS  Google Scholar 

  8. A. T. Collins and S. C. Lawson, J. Phys.: Condens. Matter 1, 6929 (1989).

    CAS  Google Scholar 

  9. H. Kawarada, Y. Yokota, Y. Mori, K. Nishimura, and A. Hiraki, J. Appl. Phys. 67, 983 (1990).

    Article  CAS  Google Scholar 

  10. V. S. Vavilov, A. A. Gippius, A. M. Zaitsev, B. V. Deryagin, B. V. Spitsyn, and A. E. Aleksenko, Fiz. Tekh. Poluprovodn. 14, 1811 (1980); [Sov. Phys. Semicond. 14, 1078 (1980)].

  11. A. T. Collins, M. Kamo, and Y. Sato, J. Phys. D 22, 1402 (1989).

    Article  CAS  Google Scholar 

  12. L. H. Robins, E. N. Farabaugh, and A. Feldman, J. Mater. Res. 7, 394 (1992).

    Article  CAS  Google Scholar 

  13. A. T. Collins, H. Kanda, and R. C. Burns, Philos. Mag. B 61, 797 (1990).

    Article  CAS  Google Scholar 

  14. N. Yamamoto, J. C. H. Spence, and D. Fathy, Philos. Mag. B 49, 609 (1984).

    Article  CAS  Google Scholar 

  15. R. J. Graham, T. D. Moustakas, and M. M. Disko, J. Appl. Phys. 69, 3212 (1991).

    Article  CAS  Google Scholar 

  16. R. J. Graham and K. V. Ravi, Appl. Phys. Lett. 60, 1310 (1992).

    Article  CAS  Google Scholar 

  17. A.T. Collins and G.S. Woods, J. Phys. C 20, L797 (1987).

    Article  CAS  Google Scholar 

  18. A.T. Collins and S.H. Robertson, J. Mater. Sci. Lett. 4, 681 (1985).

    Article  CAS  Google Scholar 

  19. P.J. Dean and I.H. Jones, Phys. Rev. 133A, 1698 (1964).

    Article  Google Scholar 

  20. P. J. Dean, E. C. Lightowlers, and D. R. Wight, Phys. Rev. 140A, 352 (1965).

    Article  Google Scholar 

  21. H. Kawarada, Y. Yokota, and A. Hiraki, Appl. Phys. Lett. 57, 1889 (1990).

    Article  CAS  Google Scholar 

  22. H. Kawarada, Y. Yokota, H. Matsuyama, T. Sogi, and A. Hiraki, in Diamond Materials, edited by A. J. Purdes, J. C. Angus, R. F. Davis, B. M. Meyerson, K. E. Spear, and M. Yoder, Electrochem. Soc. Proc. Vol. 91–8 (The Electrochemical Society, 1991), p. 420.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robins, L.H., Black, D.R. Defect mapping of a synthetic diamond single crystal by cathodoluminescence spectroscopy. Journal of Materials Research 9, 1298–1306 (1994). https://doi.org/10.1557/JMR.1994.1298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1298

Navigation