Skip to main content
Log in

Electro-optic potassium-tantalate-niobate films prepared by pulsed laser deposition from segmented pellets

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Thin films of potassium tantalate niobate (KTN) were prepared by means of pulsed excimer-laser deposition and investigated with a number of analytical techniques, including electrical and electro-optical measurements. For applications in longitudinal electro-optic modulators, a transparent electrode is required between substrate and electro-optic layers. Suitable electrode materials, which at the same time permit epitaxial growth of KTN, were identified and prepared. The resulting layered samples were not only of good epitaxial and optical quality, but also exhibited the expected maximum of the longitudinal electro-optic effect at temperatures between the phase transitions from cubic to tetragonal and from tetragonal to orthorhombic. However, the maximum achievable electro-optic phase shift was found to be limited to roughly τ/100 for KTN films in the thickness range around 1 μm. Therefore, much thicker films are probably necessary for most practical applications, which requires significant improvements in the long-term stability and homogeneity of the deposition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Chen, J.E. Geusic, S.K. Kurtz, J. G. Skinner, and S. H. Wemple, J. Appl. Phys. 37, 388 (1966).

    Article  CAS  Google Scholar 

  2. J. A. van Raalte, J. Opt. Soc. Am. 57, 671 (1967).

    Article  Google Scholar 

  3. W. Haas and R. Johannes, Appl. Opt. 6, 2007 (1967).

    Article  CAS  Google Scholar 

  4. A. J. Fox and P.W. Whipps, Electron. Lett. 7, 139 (1971).

    Article  CAS  Google Scholar 

  5. R. Gutmann, J. Hulliger, R. Hauert, and E. M. Moser, J. Appl. Phys. 70, 2648 (1991).

    Article  CAS  Google Scholar 

  6. S. Triebwasser, Phys. Rev. 114, 63 (1959).

    Article  CAS  Google Scholar 

  7. S. Yilmaz and R. Gerhard-Multhaupt, Ferroelectrics 94, 103 (1989).

    Article  CAS  Google Scholar 

  8. A. Reisman, S. Triebwasser, and F. Holtzberg, J. Am. Chem. Soc. 77, 4228 (1955).

    Article  CAS  Google Scholar 

  9. H. J. Scheel and J. Sommerauer, J. Cryst. Growth 62, 291 (1983).

    Article  CAS  Google Scholar 

  10. K. W. Goeking, R. K. Pandey, P. J. Squattrito, A. Clearfield, and H.R. Beratan, Ferroelectrics 92, 89 (1989).

    Article  CAS  Google Scholar 

  11. P. Bohac and H. Kaufmann, Electron. Lett. 22, 861 (1986).

    Article  Google Scholar 

  12. D. Fluck, R. Gutmann, P. Günter, and R. Irmscher, J. Appl. Phys. 70, 5127 (1991).

    Article  Google Scholar 

  13. A. E. Feuersanger, in Thin Film Dielectrics, edited by F. Vratny (The Electrochemical Society, New York, 1969), pp. 209–236.

    Google Scholar 

  14. G.M. Davis and M.C. Gower, Appl. Phys. Lett. 55, 112 (1989).

    Article  CAS  Google Scholar 

  15. D. Dijkkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, and M. Croft, Appl. Phys. Lett. 51, 619 (1987).

    Article  CAS  Google Scholar 

  16. T. Venkatesan, Solid State Technol. 30, 39 (1987).

    Article  Google Scholar 

  17. T. Venkatesan, X.D. Wu, A. Inam, and J.B. Wachtman, Appl. Phys. Lett. 52, 1193 (1988).

    Article  CAS  Google Scholar 

  18. T. Venkatesan, C.C. Chang, D. Dijkkamp, S.B. Ogale, E.W. Chase, L. A. Farrow, D. M. Hwang, P. F. Miceli, S. A. Schwarz, J. M. Terascon, X. D. Wu, and A. Inam, J. Appl. Phys. 63, 4591 (1988).

    Article  CAS  Google Scholar 

  19. T. Venkatesan, X.D. Wu, A. Inam, Y. Jeon, M. Croft, E.W. Chase, C.C. Chang, J.B. Wachtman, R.W. Odom, F. Radicati di Brozolo, and C.A. Magee, Appl. Phys. Lett. 53, 1431 (1988).

    Article  CAS  Google Scholar 

  20. B. Dutta, X.D. Wu, A. Inam, and T. Venkatesan, Solid State Technol. 32, 106 (1989).

    Article  CAS  Google Scholar 

  21. H. S. Kwok, P. Mattocks, L. Shi, S. Witanachchi, Q. Y. Ying, J. P. Zheng, and D. T. Shaw, Appl. Phys. Lett. 52, 1825 (1988).

    Article  CAS  Google Scholar 

  22. S. B. Ogale, V. N. Koinkar, S. Joshi, V. P. Godbole, S. K. Date, A. Mitra, T. Venkatesan, and X.D. Wu, Appl. Phys. Lett. 53, 1320 (1988).

    Article  CAS  Google Scholar 

  23. E. T. Wu, A. X. Kuang, and J. D. MacKenzie, in Proceedings of the 6th International Symposium on Applications of Ferroelectrics (IEEE Service Center, Piscataway, NJ, 1986), pp. 391–393.

    Book  Google Scholar 

  24. S. Yilmaz, T. Venkatesan, and R. Gerhard-Multhaupt, Appl. Phys. Lett. 58, 2479 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, S., Gerhard-Multhaupt, R., Bonner, W.A. et al. Electro-optic potassium-tantalate-niobate films prepared by pulsed laser deposition from segmented pellets. Journal of Materials Research 9, 1272–1279 (1994). https://doi.org/10.1557/JMR.1994.1272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1272

Navigation