Skip to main content
Log in

Vapor phase synthesis of Al-doped titania powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The role of aluminum as dopant in gas phase synthesis of titania powders was experimentally investigated in an aerosol flow reactor between 1300 and 1700 K. Titania was produced by vapor phase oxidation of titanium tetrachloride in the presence of dopant aluminum trichloride vapor. The presence of aluminum altered the particle morphology from polyhedral to irregular crystals. Energy dispersive analysis and transmission electron microscopy indicated that the powders were mixtures of crystalline titania and amorphous alumina. Analysis by XPS indicated significant enrichment of aluminum on the particle surface. Some aluminum titanate (up to 17% by volume) was formed at 1700 K when a high concentration of AlCl3 was used (AlCl3/TiCl4 ≥ 0.07). Measurements of lattice parameters by x-ray diffraction indicated that aluminum formed a solid solution in titania. While titania synthesized in the absence of aluminum was about 90% anatase, the introduction of aluminum resulted in pure rutile at AlCl3/TiCl4 = 0.07. The effects of aluminum on titania phase composition and morphology are explained by the creation of oxygen vacancies in the titania crystallites and by the enhancement of the sintring rate of titania grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, Chap. 8 (John Wiley-Interscience, New York, 1972).

    Google Scholar 

  2. D. H. Solomon and D. G. Hawthorne, Chemistry of Paints and Fillers, Chap. 2 (John Wiley and Sons, New York, 1983).

    Google Scholar 

  3. K. P. Kumar, V. T. Zaspalis, F. F. M. De Mul, K. Keizer, and A. J. Burggraaf, in Better Ceramics Through Chemistry V, edited by M. J. Hampden-Smith, W. G. Klemperer, and C. J. Brinker (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), pp. 499–504.

  4. E. J. Mezey, in Vapor Deposition, edited by C. F. Powell, J. H. Oxley, and J.M. Blocher, Jr. (John Wiley & Sons, New York, 1966), p. 423.

    Google Scholar 

  5. C-J. Chen and J-M. Wu, Mater. Sci. Eng. B5, 377–383 (1990).

    Article  CAS  Google Scholar 

  6. K. J. D. MacKenzie, Trans. J. Brit. Ceram. Soc. 74, 29–34 (1975); 77–84 (1975).

    CAS  Google Scholar 

  7. R.D. Shannon, J. Appl. Phys. 35, 3414–3416 (1964).

    Article  CAS  Google Scholar 

  8. C-H. Hung, P.F. Miquel, and J.L. Katz, J. Mater. Res. 7, 1870–1875 (1992).

    Article  CAS  Google Scholar 

  9. M.K. Akhtar, Y. Xiong, and S.E. Pratsinis, AIChE J. 37, 1561–1570 (1991).

    Article  CAS  Google Scholar 

  10. M.K. Akhtar, S.E. Pratsinis, and S.V.R. Mastrangelo, J. Am. Ceram. Soc. 75, 3408–3416 (1992).

    Article  CAS  Google Scholar 

  11. S.E. Pratsinis, H. Bai, P. Biswas, M. Frenklach, and S.V.R. Mastrangelo, J. Am. Ceram. Soc. 73, 2158–2162 (1990).

    Article  CAS  Google Scholar 

  12. M. S0rlie and H.A. ∅ye, Inorg. Chem. 17, 2473–2493 (1978).

    Article  Google Scholar 

  13. D. L. Hildenbrand, K. H. Lau, and S. V. R. Mastrangelo, J. Phys. Chem. 95, 3435–3437 (1991).

    Article  CAS  Google Scholar 

  14. W. Klemperer, J. Chem. Phys. 24, 353–355 (1956).

    Article  CAS  Google Scholar 

  15. H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures, Chap. 9 (John Wiley and Sons, New York, 1954).

    Google Scholar 

  16. CRC Handbook of Chemistry and Physics, edited by D.R. Lide (CRC Press, Boca Raton, FL, 1990), pp. 4–113.

  17. Y. Suyama and A. Kato, J. Am. Ceram. Soc. 68, C154–C156 (1985).

    CAS  Google Scholar 

  18. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, New York, 1967), p. 35.

    Google Scholar 

  19. D.J. DiGiovanni, T.F. Morse, and J.W. Cipolla, Jr., J. Am. Ceram. Soc. 71, 914–923 (1988).

    Article  CAS  Google Scholar 

  20. R. A. Slepetys and P.A. Vaughan, J. Phys. Chem. 73, 2157–2162 (1969).

    Article  CAS  Google Scholar 

  21. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Co., Reading, MA, 1978), p. 411.

    Google Scholar 

  22. J-L. Hébrard, P. Nortier, M. Pijolat, and M. Soustelle, J. Am. Ceram. Soc. 73, 79–84 (1990).

    Article  CAS  Google Scholar 

  23. R.D. Shannon and C.T. Prewitt, Acta Crystallogr. B25, 925–946 (1969).

    Article  Google Scholar 

  24. R.D. Shannon and J. A. Pask, J. Am. Ceram. Soc. 48, 391–398 (1965).

    Article  CAS  Google Scholar 

  25. Y. Xiong, M. K. Akhtar, and S. E. Pratsinis, J. Aerosol Sci. 24, 301–313 (1993).

    Article  CAS  Google Scholar 

  26. H.A. Anderson, J. Am. Ceram. Soc. 50, 235–238 (1967).

    Article  CAS  Google Scholar 

  27. R. D. Bagley, I. B. Cutler, and D. L. Johnson, J. Am. Ceram. Soc. 53, 793–799 (1970).

    Article  Google Scholar 

  28. Perkin-Elmer Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhtar, K.M., Pratsinis, S.E. & Mastrangelo, S.V.R. Vapor phase synthesis of Al-doped titania powders. Journal of Materials Research 9, 1241–1249 (1994). https://doi.org/10.1557/JMR.1994.1241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1241

Navigation