Skip to main content
Log in

Strain aging and breakaway strain amplitude of damping in NiAl and NiAlZr

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Extruded NiAl and NiAlZr alloys often show discontinuous yielding on strain aging in compression at room temperature. Two sets of experiments were conducted to understand the reasons for this yield-point behavior. First, strain-aging experiments were carried out on NiAl alloys containing O to 0.1 at. % Zr. The specimens were all deformed in compression at room temperature at a nominal initial strain rate of 1.1 × 10−4S−1, and the effect of annealing at 700 and 1200 K on the stress-strain curves and the yield strength was studied after an initial prestrain. While annealing at 700 and 1200 K consistently reduced the yield strength of both NiAl and NiAlZr, the effects were quite different. In the case of NiAl, annealing at 1200 K did not result in discontinuous yielding, whereas it generally resulted in a sharp yield point for the Zr containing alloys. Second, the PUCOT (piezoelectric ultrasonic composite oscillator technique) was used to measure the dynamic Young modulus, breakaway strain amplitude, and damping for the alloys. Only small differences were observed in the values of Young's modulus, but the breakaway strain was at least a factor of 2 to 3 lower for NiAl than for NiAlZr. The experimentally determined values of damping were used in the Granato-Lücke model to estimate the binding energy for NiAl. While the binding energy values were found to be in agreement with the calculated values of dislocation kink nucleation and migration energies in this material, to within an order of magnitude, other effects, such as dislocation pinning by quenched-in vacancies, cannot be ruled out. The observations made in this study suggest that the yield-point behavior in NiAl may be due to several factors, such as difficulties in double kink nucleation, and single kink migration, as well as dislocation-vacancy interactions; whereas, the yield-point behavior in the Zr-alloyed material is due at least in part to dislocation-solute interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Darolia, JOM 43, 44 (1991).

    Article  CAS  Google Scholar 

  2. E.P. George and C.T. Liu, J. Mater. Res. 5, 754 (1990).

    Article  CAS  Google Scholar 

  3. S. V. Raj, R. D. Noebe, and R. R. Bowman, Scripta Metall. 23, 2049 (1989).

    Article  CAS  Google Scholar 

  4. R.R. Bowman, R.D. Noebe, S.V. Raj, and I.E. Locci, Metall. Trans. 23A, 1493 (1992).

    Article  CAS  Google Scholar 

  5. S.V. Raj, Metall. Trans. 23A, 1691 (1992).

    Article  CAS  Google Scholar 

  6. C. R. Barrett, Oxid. Met. 30, 361 (1988).

    Article  CAS  Google Scholar 

  7. M.V. Zeller, R.D. Noebe, and I.E. Locci, HITEMP Review 1990: Advanced High Temperature Engine Materials Technology Program, NASA CP 10051 (1990), pp. 21-1-21-17.

    Google Scholar 

  8. J. Marx, Rev. Sci. Instrum. 22, 503 (1951).

    Article  Google Scholar 

  9. W.H. Robinson and A. Edgar, IEEE Trans. Sonics and Ultrasonics SU-21, 98 (1974).

    Article  Google Scholar 

  10. M. R. Harmouche and A. Wolfenden, Mater. Sci. 84, 35 (1986).

    CAS  Google Scholar 

  11. S.V. Raj and R.D. Noebe, unpublished research.

  12. J. E. Hack, J. M. Brzeski, and R. Darolia, Scripta Metall. Mater. 27, 1259 (1992).

    Article  CAS  Google Scholar 

  13. R. D. Field, D. F. Lahrman, and R. Darolia, in High-Temperature Ordered Intermetallic Alloys V, edited by I. Baker, R. Darolia, J. D. Whittenberger, and M. H. Yoo (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), p. 423.

  14. A. W. Margevicius, J. J. Lewandowski, and I. Locci, Scripta Metall. Mater. 26, 1733 (1992).

    Article  CAS  Google Scholar 

  15. R.D. Noebe, R.R. Bowman, and M.V. Nathal, Int. Mater. Rev. 38, 193 (1993).

    Article  CAS  Google Scholar 

  16. D. B. Miracle, Acta Metall. Mater. 41, 649 (1993).

    Article  CAS  Google Scholar 

  17. A. V. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).

    Article  Google Scholar 

  18. A.V. Granato and K. Lücke, J. Appl. Phys. 27, 790 (1956).

    Google Scholar 

  19. K. Lücke and A. V. Granato, in Dislocations and Mechanical Properties of Crystals, edited by J. C. Fisher, W. G. Johnston, R. Thompson, and T. Vreeland, Jr. (John Wiley, New York, 1957), p. 433, Fig. 6.

    Google Scholar 

  20. A. V. Granato and K. Lücke, J. Appl. Phys. 52, 7139 (1981).

    Article  Google Scholar 

  21. I. Holwech, J. Appl. Phys. 31, 928 (1960).

    Article  CAS  Google Scholar 

  22. T. S. Hutchison, S. L. McBride, and D. H. Rogers, Acta Metall. 10, 397 (1962).

    Article  CAS  Google Scholar 

  23. J. C. Schwartz, Acta Metall. 10, 406 (1962).

    Article  Google Scholar 

  24. W.J. Bratina and D. Mills, Acta Metall. 10, 419 (1962).

    Article  CAS  Google Scholar 

  25. J.R. Hellman, D.A. Koss, C.A. Moose, R. R. Petrich, and M.N. Kallus, HITEMP Review 1990: NASA CP 10051 (1990), pp. 41-1-41-11.

    Google Scholar 

  26. H.W. King, J. Mater. Sci. 1, 79–90 (1966).

    Article  CAS  Google Scholar 

  27. C. L. Fu, Y. Y. Ye, and M. H. Yoo, in High-Temperature Ordered Intermetallic Alloys V, edited by I. Baker, R. Darolia, J. D. Whittenberger, and M. H. Yoo (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), p. 21.

  28. R. Bullough and R.C. Newman, Philos. Mag. 7, 529 (1962).

    Article  Google Scholar 

  29. D. Hull, Introduction to Dislocations (Pergamon Press, New York, 1965), p. 210.

    Google Scholar 

  30. M. Doyama, in Materials Science Forum: Vacancies and Inter-stitials in Metals and Alloys, edited by C. Abromeit and H. Wollenberger (Trans. Tech. Publications, Switzerland, 1987), Vols. 15–18, p. 1203.

  31. J. Fan and G. S. Collins, Hyperfine Struct. 60, 655 (1990).

    Article  CAS  Google Scholar 

  32. R.J. Wasilewski, Acta Metall. 15, 1757 (1967).

    Article  CAS  Google Scholar 

  33. L. A. Kucherenko, N. M. Aristova, and V. A. Troshkina, Russian J. Phys. Chem. 49, 14 (1975).

    Google Scholar 

  34. A. Parthasarthi and H. L. Fraser, Philos. Mag. 50, 89 (1984).

    Article  Google Scholar 

  35. K. Masuda-Jindo, in Materials Science Forum: Vacancies and Interstitials in Metals and Alloys, edited by C. Abromeit and H. Wollenberger (Trans. Tech. Publications, Switzerland, 1987), Vols. 15–18, p. 1299.

  36. J.P. Neumann, Acta Metall. 28, 1165 (1980).

    Article  CAS  Google Scholar 

  37. T.A. Parthasarathy, D.M. Dimiduk, and G. Saada, in High-Temperature Ordered Intermetallic Alloys V, edited by I. Baker, R. Darolia, J. D. Whittenberger, and M. H. Yoo (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), p. 311.

  38. J. P. Hirth and J. Lothe, Theory of Dislocations (John Wiley and Sons, New York, 1982), pp. 241, 530–554, 670, 673.

    Google Scholar 

  39. R.T. Pascoe and C.W.A. Newey, Met. Sci. J. 5, 50 (1971).

    Article  CAS  Google Scholar 

  40. V. Hivert, P. Groh, W. Frank, I. Ritchie, and P. Moser, Phys. Status Solidi A 46, 89 (1978).

    Article  CAS  Google Scholar 

  41. A. Seeger, Phys. Status Solidi A 55, 457 (1979).

    Article  CAS  Google Scholar 

  42. J. P. Hirth, Metall. Trans. 11A, 861 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfenden, A., Raj, S.V. & Kondlapudi, S.K.R. Strain aging and breakaway strain amplitude of damping in NiAl and NiAlZr. Journal of Materials Research 9, 1166–1173 (1994). https://doi.org/10.1557/JMR.1994.1166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1166

Navigation