Skip to main content
Log in

Di- and tri-carboxylic-acid-based etches for processing high temperature superconducting thin films and related materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of passive and active electronics from high-temperature superconducting thin films depends on the development of process technology capable of producing appropriate feature sizes without degrading the key superconducting properties. We present a new class of chelating etches based on di- and tri-carboxylic acids that are compatible with positive photoresists and can produce submicron feature sizes while typically producing increases in the microwave surface resistance at 94 GHz by less than 10%. This simple etching process works well for both the Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O systems. In addition, we demonstrate that the use of chelating etches with an activator such as HF allows the etching of related oxides such as LaAlO3, which is a key substrate material, and Pb(Zr0.53Ti0.47)O3 (PZT) which is a key ferroelectric material for HTS and other applications such as nonvolatile memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Vasquez, B. D. Hunt, and M. C. Foote, Appl. Phys. Lett. 53, 2692 (1988).

    Article  CAS  Google Scholar 

  2. P. T. Bowman, E. I. Ko, and P. J. Sides, J. Electrochem. Soc. 137, 1309 (1990).

    Article  CAS  Google Scholar 

  3. J.S. Martens, T.E. Zipperian, D.S. Ginley, V.M. Hietala, C.P. Tigges, and T. A. Plut, J. Appl. Phys. 69, 8261 (1991).

    Article  Google Scholar 

  4. J. R. Sheais, P. M. Merchant, J. Amano, R. C. Taber, and N. Newman, in Effects of Processing on Electrical Properties of YBa2Cu3O7 Films Prepared by Different Methods (Mater. Res. Soc. Symp. Proa, Pittsburgh, PA, 1991).

    Google Scholar 

  5. R. P. Vasquez, M. C. Foote, and B. D. Hunt, Appl. Phys. Lett. 55, 1801 (1989).

    Article  CAS  Google Scholar 

  6. R. P. Vasquez, B. D. Hunt, and M. C. Foote, J. Electrochem. Soc. 137, 2344 (1990).

    Article  CAS  Google Scholar 

  7. P. M. James, E. J. Thompson, and A. B. Ellis, Chem. Mater. 3, 1087 (1991).

    Article  CAS  Google Scholar 

  8. F. K. Shokoohi, L. M. Schiavone, C. T. Rogers, A. Inman, X. D. Wu, L. Nazar, and T. Venkatesan, Appl. Phys. Lett. 55, 2661 (1989).

    Article  CAS  Google Scholar 

  9. C.I.H. Ashby, J. Martens, T.A. Plut, D.S. Ginley, and J.M. Phillips, Appl. Phys. Lett. 60, 2147 (1992).

    Article  CAS  Google Scholar 

  10. Equilibrium constant information was obtained from a number of sources including (a) Dialog search on Beilstein (c) (Springer-Verlag, New York, 1992); (b) S. Budavari, Merck Index (Merck & Co. Inc., Rattaway, NJ, 1989), pp. 27, 363, 702, 896, 1093, 1399; (c) N. A. Skorik, Reakts. Sposobn. Veshchestv, edited by Serebrennikov and V. V. Tomskii, “Phase Equilibriums, Chemical Equilibriums and Solutions” (University of Toms., USSR, 1978), pp. 3–8; (d) X.J. Fan, M. Colic, N. Kallay, and E. Matijevic, Colloid and Polymer Sci. 266, 580 (1988); (f) T. Fujihara, Jpn. J. Oral Biol. 30, 54 (1988).

  11. M.P. Siegal, J.M.Phillips, Y.F. Hsieh, and J.Marshall, Physica C 172, 282 (1990).

    Article  CAS  Google Scholar 

  12. D. S. Ginley, J. F. Kwak, E. L. Venturini, B. Morosin, and R. J. Baughman, Physica C 160, 42 (1989).

    Article  CAS  Google Scholar 

  13. J. S. Martens, V. M. Hietala, D. S. Ginley, T. E. Zipperian, and G. K. G. Hohenwarter, Appl. Phys. Lett. 58, 2543 (1991).

    Article  CAS  Google Scholar 

  14. (a) D. N. Shelke and D. V. Jahaqirdar, J. Indian Chem. Soc. 58, 580 (1981); (b) C. Jauker and R. Pietsch, Anal. Chim. Acta 90, 349 (1977); (c) N. A. Skorik and V.N. Kumok, Zh. Neorg. Khim. 14, 98 (1969); (d) V.N. Kumok and N.A. Skorik, Zh. Neorg. Khim. 15, 291 (1970); (e) E. Boltari, R. Jasionowska, and R. Porto, Ann. Chim. (Rome) 72, 333 (1982).

  15. T. Fujihara, Shika Kiso Igakkai Zasshi 30, 54 (1988); G. Davies, Trans. Faraday Soc. 49, 1405 (1953).

  16. J.M. Rosamilia, B. Miller, L.F. Shneemeyer, J. V. Waszcak, and H.M. O’Bryan, J. Electrochem. Soc. 134, 1863 (1987).

    Article  CAS  Google Scholar 

  17. J.S. Martens, V.M. Hietala, T.A. Plut, D.S. Ginley, G.A. Vawter, C. P. Tigges, M. P. Siegal, J. M. Phillips, and S. Y. Hou, IEEE Trans. Appl. Supercond. 3, 2295 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginley, D.S., Barr, L., Ashby, C.I.H. et al. Di- and tri-carboxylic-acid-based etches for processing high temperature superconducting thin films and related materials. Journal of Materials Research 9, 1126–1133 (1994). https://doi.org/10.1557/JMR.1994.1126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1126

Navigation