Skip to main content
Log in

Terrace growth and polytype development in epitaxial β-SiC films on α-SiC (6H and 15R) substrates

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Epitaxial β-SiC (3C) films were grown on (0001) 6H-SiC and 15R-SiC substrates by chemical vapor deposition (CVD). TEM characterization revealed that films on both substrates exhibited large areas of atomically flat, coherent interfaces. However, when 3C-SiC films were grown on 6H substrates, double position boundaries (DPB’s) were frequently observed, and islands of 6H were occasionally embedded in the predominantly 3C film. In contrast, films of 3C-SiC grown on 15R substrates exhibited relatively few DPB’s and only occasional islands of 15R. A model of interlay er interactions in SiC was applied to predict the atomic structures at both 3C/6H and 3C/s15R interfaces, and these predictions were consistent with experimental observations of the interfaces by TEM. The observed interface structures and defect distributions were attributed to a microscopic kinetic mechanism of terrace growth. Consideration of step energies and growth kinetics led to the prediction that DPB’s can be avoided by growing 3C-SiC films on 15R-SiC substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Ramsdell, Am. Mineral. 32, 64 (1947).

    CAS  Google Scholar 

  2. G. S. Zhdanov, C. R. (Dokl.) Acad. Sci. USSR 48, 39 (1945).

    CAS  Google Scholar 

  3. G.C. Trigunayat and G.K. Chadha, Phys. Status Solidi 4, 9 (1971).

    Article  CAS  Google Scholar 

  4. Y. Inomata, in Silicon Carbide Ceramics-I, edited by S. Sömiya and Y. Inomata (Elsevier Applied Science, New York, 1991), p. 9.

  5. J. A. Powell and L. G. Matus, in Amorphous and Crystalline Silicon Carbide, edited by G. L. Harris and C. Y-W. Yang (Springer Proceedings in Physics, 1989), Vol. 34, p. 2.

  6. P. Pirouz, in Polycrystalline Semiconductors, edited by J. H. Werner, H. J. Möller, and H. P. Strunk (Springer Proceedings in Physics, 1989), Vol. 35, p. 200.

  7. J.D. Parsons, R.F. Bunshah, and O.M. Stafsudd, Solid State Technol. 11, 133 (1985).

    Google Scholar 

  8. F.R. Chien, S.R. Nutt, N. Buchan, J.M. Carulli, C.P. Beetz, W. S. Yoo, and D. Cummings, in Evolution of Surface and Thin Film Microstructure, edited by H. A. Atwater, E. H. Chason, M. L. Grabow, and M. G. Lagally (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1993), p. 733.

  9. F. R. Chien, S. R. Nutt, N. Buchan, J. M. Carulli, and W. S. Yoo, in Common Themes and Mechanisms of Epitaxial Growth, edited by P. Fuoss, J. Tsao, D. Kisker, A. Zangwill, and T. Kuech (Mater. Res. Soc. Symp. Proc. 312, Pittsburgh, PA, 1993), p. 303.

  10. F.R. Chien, S.R. Nutt, and D. Cummings, Philos. Mag. A 68, 325 (1993).

    Article  Google Scholar 

  11. H.S. Kong, B.L. Jiang, J.T. Glass, G.A. Rozgonyi, and K.L. More, J. Appl. Phys. 63, 2645 (1988).

    Article  CAS  Google Scholar 

  12. J.A. Powell, D.J. Larkin, L.G. Matus, W.J. Choyke, J.L. Bradshaw, L. Henderson, M. Yoganathan, J. Yang, and P. Pirouz, Appl. Phys. Lett. 56, 1353 (1990).

    Article  CAS  Google Scholar 

  13. Y. C. Wang, H. S. Kong, J. T. Glass, R. F. Davis, and K. L. More, J. Am. Ceram. Soc. 73, 1289 (1990).

    Article  CAS  Google Scholar 

  14. W.F. Knippenberg, Philips Res. Rept. 18, 161 (1963).

    CAS  Google Scholar 

  15. V. Heine, C. Cheng, and R.J. Needs, J. Am. Ceram. Soc. 74, 2630 (1991).

    Article  CAS  Google Scholar 

  16. A. R. Verma and P. Krishna, Polymorphism and Polytypism in Crystals (John Wiley and Sons, Inc., New York, 1966), Chap. 4.

  17. W. S. Yoo and H. Matsunami, in Amorphous and Crystalline Silicon Carbide, edited by C. Y. Yang, M. M. Rahman, and G. L. Harris (Springer Proceedings, 1992), Vol. 71, p. 66.

  18. S. Nishino, H. Matsunami, and T. Tanaka, J. Cryst. Growth 45, 144 (1978).

    Article  CAS  Google Scholar 

  19. S. Yoshida, E. Sakuma, H. Okumura, S. Misawa, and K. Endo, J. Appl. Phys. 62, 303 (1987).

    Article  CAS  Google Scholar 

  20. W. S. Yoo, S. Nishino, and H. Matsunami, Memoirs of the Faculty of Engineering, Kyoto University 49, 21 (1987).

    CAS  Google Scholar 

  21. W. V. Muench and I. Pfaffeneder, Thin Solid Films 31, 39 (1976).

    Article  CAS  Google Scholar 

  22. M.J. Stowell, in Epitaxial Growth-Part B, edited by J.W. Matthews (Academic, New York, 1975), p. 465.

  23. L.U. Ogbuji, T.E. Mitchell, and A.H. Heuer, J. Am. Ceram. Soc. 64, 91 (1981).

    Article  CAS  Google Scholar 

  24. C. Cheng, R. J. Needs, and V. Heine, J. Phys. C 21, 1049 (1988).

    Article  CAS  Google Scholar 

  25. J.J.A. Shaw and V. Heine, J. Phys. Condens. Matter 2, 4351 (1990).

    Article  CAS  Google Scholar 

  26. H. Matsunami, K. Shibahara, N. Kuroda, W. S. Yoo, and S. Nishino, in Amorphous and Crystalline Silicon Carbide, edited by G. L. Harris and C. Y. Yang (Springer Proceedings, 1989), Vol. 34, p. 34.

  27. H.S. Kong, J.T. Glass, and R.F. Davis, J. Appl. Phys. 64, 2672 (1988).

    Article  CAS  Google Scholar 

  28. E. Bauser and G.A. Rozgonyi, Appl. Phys. Lett. 37, 1001 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, F.R., Nutt, S.R., Yoo, W.S. et al. Terrace growth and polytype development in epitaxial β-SiC films on α-SiC (6H and 15R) substrates. Journal of Materials Research 9, 940–954 (1994). https://doi.org/10.1557/JMR.1994.0940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0940

Navigation