Skip to main content
Log in

Oxidation of epitaxial Fe films monitored by x-ray reflectivity

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have studied the oxidation of thin epitaxial Fe(100) films on MgO(100) with and without an Au(100) protecting cap by x-ray reflectivity measurements. The oxidation was carried out under atmospheric conditions between 20 δC and 200 δC. The results are compared to the oxidation of Fe(110) oriented films on Al2O3(1120) substrates with an Au(111) cap. Auger electron spectroscopy before and after oxidation was carried out for sublimentary chemical information of the surface. For the uncovered Fe films we observe smoothly growing oxide films at the surface during oxidation at elevated temperatures. As expected, the Au(100) cap serves as an effective shield against oxidation, while the Au(111) cap, surprisingly, does not. In the case of Au/Fe/Al203, we find Fe2O3 formation at the surface of the Au layer at 200 δC. The different behavior of Au(100) and Au(111) is discussed in terms of stacking faults and/or domain structure occurring in the latter case during epitaxial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bäumer, D. Cappus, H-J. Freund, G. Wilhelmi, A. Brodde, and H. Neddermeyer, Surf. Sci. 253, 116 (1991).

    Article  Google Scholar 

  2. C. Xu, M. Hassel, H. Kuhlenbeck, and H-J. Freund, Surf. Sci. 258, 23 (1991).

    Article  CAS  Google Scholar 

  3. S. Morohashi, Y. Kataoka, T. Imamura, and S. Hasuo, Appl. Phys. Lett. 62, 1164 (1993).

    Article  CAS  Google Scholar 

  4. H. Zabel, in Festkörperprobleme (Advances in Solid State Physics), edited by U. Rossler (Vieweg, Braunschweig, Germany, 1990), Vol. 30, p. 197.

  5. R.A. Cowley and T.W. Ryan, J. Phys. D: Appl. Phys. 20, 61 (1987).

    Article  CAS  Google Scholar 

  6. L. Brüggemann, R. Bloch, W. Press, and P. Gerlach, J. Phys.: Condensed Matter 2, 8869 (1990).

    Google Scholar 

  7. P.H. Fuoss and L.J. Norton, Phys. Rev. Lett. 60, 600 (1988).

    Article  CAS  Google Scholar 

  8. A. Stierle, A. Abromeit, N. Metoki, and H. Zabel, J. Appl. Phys. 73, 4808 (1993).

    Article  CAS  Google Scholar 

  9. K. Nakajima, S. Aoiki, S. Sudo, M. Mondo, and H. Kudo, Jpn. J. Appl. Phys. 32, 164 (1993).

    Article  CAS  Google Scholar 

  10. Y. Cheng, D. J. Smith, M. B. Stearns, and D. G. Stearns, J. Appl. Phys. 72, 5165 (1992).

    Article  CAS  Google Scholar 

  11. D. Bahr, W. Press, R. Jebasinski, and S. Mantl, Phys. Rev. B 47, 4385 (1993).

    Article  CAS  Google Scholar 

  12. S.M. Heald and E.V. Barrera, J. Mater. Res. 6, 935 (1991).

    Article  CAS  Google Scholar 

  13. V. S. Smentkowski and J.T. Yates, Jr., Surf. Sci. 232, 113 (1990).

    Article  CAS  Google Scholar 

  14. M. Langell and G. A. Somorjai, J. Vac. Sci. Technol. 21, 858 (1982).

    Article  CAS  Google Scholar 

  15. V. Sinkovic, P. D. Johnson, N. B. Brooks, A. Clarke, and N. V. Smith, Phys. Rev. Lett. 65, 1647 (1990).

    Article  CAS  Google Scholar 

  16. N.S. McIntyre and D.G. Zetaruk, Anal. Chem. 49, 1521 (1977).

    Article  CAS  Google Scholar 

  17. S. Vasudevan, M. S. Hedge, and C. N. R. Rao, J. Solid State Chem. 29, 253 (1979).

    Article  CAS  Google Scholar 

  18. Ch. Morawe, A. Stierle, N. Metoki, K. Bröhl, and H. Zabel, J. Magn. Magn. Mater. 102, 223 (1991).

    Article  CAS  Google Scholar 

  19. M. Hansen, Constitution of Binary Alloys (McGraw-Hill Book Company, New York, 1958).

  20. N. Metoki, M. Hofelich, Th. Zeidler, T. Mühge, C. Morawe, and H. Zabel, J. Magn. Magn. Mater. 121, 137 (1993).

    Article  CAS  Google Scholar 

  21. N. Metoki, T. Mühge, and H. Zabel, unpublished.

  22. K. Shintaku, Y. Daitoh, and T. Shinjo, Phys. Rev. B 47, 14584 (1993).

    Article  CAS  Google Scholar 

  23. T. Okuyama, Jpn. J. Appl. Phys. 30, 2053 (1991).

    Article  CAS  Google Scholar 

  24. G. W. R. Leibbrandt, G. Hoogers, and F. H. P. M. Habraken, Phys. Rev. Lett. 68, 1947 (1992).

    Article  CAS  Google Scholar 

  25. J. Als Nielsen, in Structure and Dynamics of Surfaces II, Topics in Current Physics, edited by W. Schommers and P. Blanckenhagen (1987), Vol. 43.

  26. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  Google Scholar 

  27. L. Névot and P. Croce, Revue Phys. Appl. 15, 761 (1980).

    Article  Google Scholar 

  28. M.L. Colaianni, P.J. Chen, and J.T. Yates, Jr., Surf. Sci. 238, 13 (1990).

    Article  CAS  Google Scholar 

  29. A.M. Dhote, S.C. Patil, S.M. Kanetkar, S.A. Gangal, and S.B. Ogale, J. Mater. Res. 7, 1685 (1992).

    Article  CAS  Google Scholar 

  30. C. Chang, Appl. Phys. Lett. 55, 2754 (1989).

    Article  CAS  Google Scholar 

  31. R. Feidenhans’l, Surf. Sci. Rep. 10, 105 (1989).

    Article  Google Scholar 

  32. L. A. Krebs, J. Kruger, G. G. Long, J. F. Ankner, C. F. Majkrzak, S. K. Satija, and D. G. Wiesler, Proceedings of the Symposium on Oxide Films on Metals and Alloys (The Electrochemical Society, Pennington, NJ, 1992), Vol. 92–22, p. 580.

  33. C. F. Majkrzak, Physica B 173, 75 (1991).

    Article  CAS  Google Scholar 

  34. A. Schreyer, T. Zeidler, Ch. Morawe, N. Metoki, H. Zabel, J. F. Ankner, and C. F. Majkrzak, J. Appl. Phys. 73, 7616 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stierle, A., Mühge, T. & Zabel, H. Oxidation of epitaxial Fe films monitored by x-ray reflectivity. Journal of Materials Research 9, 884–890 (1994). https://doi.org/10.1557/JMR.1994.0884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0884

Navigation