Skip to main content
Log in

Reconstruction of grain boundaries in copper and gold by simulation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The reconstructions of high-angle twist grain boundaries on the four densest atomic planes in fcc copper, as described by a Lennard-Jones potential, and gold, as described by an embedded-atom-method potential, are investigated using the recently developed method of grand-canonical simulated quenching. It is found that the grain boundaries on the widely spaced (111) and (100) planes do not reconstruct, while those on the less widely spaced (110) and (113) planes do reconstruct. The effect that reconstruction can have on the physical properties of an interfacial system is illustrated by comparing the elastic properties and ideal cleavage energies of reconstructed grain boundaries with those of corresponding unreconstructed grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wolf and K. L. Merkle, in Materials Interfaces: Atomic Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992).

  2. D. Wolf and R. Benedek, Adv. Ceram. 1, 107 (1981).

    CAS  Google Scholar 

  3. D. Wolf, J. de Phys. 43C6, 45 (1982).

    Google Scholar 

  4. D. Wolf, J. Am. Ceram. Soc. 67, 1 (1984).

    Article  CAS  Google Scholar 

  5. C.P. Sun and R. W. Balluffi, Philos. Mag. A 46, 49 (1982).

    Article  CAS  Google Scholar 

  6. J. A. Eastman, F. Schmuckle, M. Vaudin, and S.L. Sass, Adv. Ceram. 10, 324 (1984).

    CAS  Google Scholar 

  7. K. Y. Liou and N. L. Peterson, in Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems, edited by J. Pask and A. Evans (Plenum Press, New York, 1981).

  8. P. W. Tasker and D. M. Duffy, Philos. Mag. A 47, L45 (1983).

  9. D. Wolf, in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by J. H. Crawford, Jr., Y. Chen, and W. A. Sibley (Mater. Res. Soc. Symp. Proc. 24, Elsevier Science Publishing, New York, 1984), p. 47.

  10. S. R. Phillpot and J. M. Rickman, J. Chem. Phys. 97, 2651 (1992).

    Article  CAS  Google Scholar 

  11. S. R. Phillpot, in Materials Theory and Modelling, edited by P. D. Bristowe, J. Broughton, and J. M. Newsam (Mater. Res. Soc. Symp. Proc. 291, Pittsburgh, PA, 1993), p. 49.

  12. T. L. Hill, Statistical Mechanics (McGraw-Hill, New York, 1956).

  13. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  14. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  15. S. D. Stoddard and J. Ford, Phys. Rev. A 8, 1504 (1973).

    Article  CAS  Google Scholar 

  16. M. P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

  17. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  CAS  Google Scholar 

  18. D. Wolf, Surf. Sci. 226, 389 (1990).

    Article  CAS  Google Scholar 

  19. D. Wolf, Acta Metall. 37, 1983 (1989).

    Article  CAS  Google Scholar 

  20. D. Wolf, Acta Metall. 37, 2823 (1989).

    Article  CAS  Google Scholar 

  21. D. Wolf and M.D. Kluge, Scripta Metall. 24, 907 (1990).

    Article  CAS  Google Scholar 

  22. D. Wolf and J. F. Lutsko, J. Mater. Res. 4, 1427 (1989).

    Article  CAS  Google Scholar 

  23. S.R. Phillpot, J. Appl. Phys. 72, 5606 (1992).

    Article  Google Scholar 

  24. A.A. Griffith, Trans. R. Soc. London A 221, 163 (1920).

    Google Scholar 

  25. M.L. Jokl, V. Vitek, and C.J. McMahon, Acta Metall. 28, 1479 (1980).

    Article  Google Scholar 

  26. D. Wolf, J. F. Lutsko, and M. D. Kluge, in Atomistic Simulation of Materials—Beyond Pair Potentials, edited by V. Vitek and D. J. Srolovitz (Plenum Press, Chicago, IL, 1989).

  27. I. Majid, P.D. Bristowe, and R.W. Balluffi, Phys. Rev. B 40, 2779 (1989).

    Article  CAS  Google Scholar 

  28. M.S. Taylor, I. Majid, P.D. Bristowe, and R.W. Balluffi, Phys. Rev. B 40, 2772 (1989).

    Article  CAS  Google Scholar 

  29. M. R. Fitzsimmons and S. L. Sass, Acta Metall. 37, 1009 (1989).

    Article  CAS  Google Scholar 

  30. I. Majid and P. D. Bristowe, Philos. Mag. A 66, 73 (1992).

    Article  CAS  Google Scholar 

  31. W. C. Swope and H. C. Andersen, Phys. Rev. A 46, 4539 (1992).

    Article  CAS  Google Scholar 

  32. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 2nd Edition (Cambridge University Press, Cambridge, U.K., 1992).

  33. W. H. Press and S. A. Teukolsky, Computers in Physics 5, 426 (1991).

    Article  Google Scholar 

  34. S.R. Phillpot, unpublished research.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillpot, S.R. Reconstruction of grain boundaries in copper and gold by simulation. Journal of Materials Research 9, 582–591 (1994). https://doi.org/10.1557/JMR.1994.0582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0582

Navigation