Skip to main content
Log in

Oxygen availability in mixed cerium/praseodymium oxides and the effect of noble metals

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Oxyreduction studies of mixed Ce/Pr oxides have been carried out. Temperature-programmed desorption (TPD), temperature-programmed reduction (TPR), and temperature-programmed oxidation (TPO) were used to study the uptake and release of the oxygen. Large amounts of oxygen, exceeding those in ceria, are accessible in the mixed metal oxides at moderate temperatures. The addition of small amounts of noble metals to the mixed oxides shifts the accessibility of the “stored” oxygen to still lower temperatures with the effect of Pd being more pronounced than that of Pt. In a sample containing 45 mol % ceria and 55 mol % praseodymia, a small addition of Pd (0.24 mol %) was found to lower the reduction temperature by more than 100 °C. The addition of Pt had a lesser effect. Similarly, in pure praseodymia (Pr6O11) Pd influences the reduction much more strongly than Pt. In the mixed samples, whether doped with a noble metal or not, the whole oxyreduction effect can be accounted for by the change in oxidation state of the praseodymium ions solely. This notwithstanding, the reduction of the mixed oxides, without noble metals or doped by Pt, is more facile than that of praseodymia. Only the incorporation of Pd makes the reduction of praseodymia proceed at a temperature below that registered for a mixed ceriapraseodymia sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Gandhi, A. G. Piken, M. Shelef, and R. G. Delosh, SAE 760201, 55–66 (1976).

  2. J. T. Kummer, Prog. Energy Combust. Sci. 6, 177–199 (1980).

    Article  CAS  Google Scholar 

  3. J. C. Schlatter and P. J. Mitchell, Ind. Eng. Chem., Prod. Res. Dev. 19, 288–293 (1980).

    Article  CAS  Google Scholar 

  4. G. Kim, Ind. Eng. Chem., Prod. Res. Dev. 21, 267–274 (1982).

    Article  CAS  Google Scholar 

  5. H. C. Yao and Y. F. Yu Yao, J. Catal. 86, 254–265 (1984).

    Article  CAS  Google Scholar 

  6. A. S. Sass, A. V. Kuznetsov, V. A. Shvets, G. A. Savel’eva, N. M. Popova, and V. B. Kazanskii, Kinet. Katal. 26, 1411–1416 (1985).

    CAS  Google Scholar 

  7. E. C. Su and W. G. Rothschild, J. Catal. 99, 506–510 (1986).

    Article  CAS  Google Scholar 

  8. J. Z. Shyu, W. H. Weber, and H. S. Gandhi, J. Phys. Chem. 92, 4964–4970 (1988).

    Article  CAS  Google Scholar 

  9. M. Ozawa and M. Kimura, J. Mater. Sci. Lett. 9, 291–293 (1990).

    Article  CAS  Google Scholar 

  10. S. E. Oh, J. Catal. 124, 477–487 (1990).

    Article  CAS  Google Scholar 

  11. S. E. Oh and C. C. Eickel, J. Catal. 128, 526–536 (1991).

    Article  CAS  Google Scholar 

  12. B. K. Cho, B. H. Shanks, and J. E. Bailey, J. Catal. 155, 486–499 (1989).

    Article  Google Scholar 

  13. T. Miki, T. Ogawa, M. Haneda, N. Kakuta, A. Ueno, S. Tateishi, S. Matsuura, and M. Sato, J. Phys. Chem. 94, 6464–6467 (1990).

    Article  CAS  Google Scholar 

  14. B. K. Cho, J. Catal. 131, 74–87 (1991).

    Article  CAS  Google Scholar 

  15. J. A. Jones and G. D. Blue, J. Spacecraft 25, 202–208 (1988).

    Article  CAS  Google Scholar 

  16. J. T. Mullhaupt, U. S. Patent 3 980763 (1976).

  17. Japan Kokai Tokkyo Koho JP Nos. : 63-240947, 63-104651, 63-84636, 63-77545, 62-282640, 61-293550, and 61-197038.

  18. S. Kitaguchi, K. Tsuchiya, and T. Ohata, Japan Kokai Tokkyo Koho JP No. 03-196841.

  19. X. Liu, Y. Yang, and J. Zhang, Appl. Catal. 71, 167–184 (1991).

    Article  CAS  Google Scholar 

  20. D. J. M. Bevan, J. Inorg. Nucl. Chem. 1, 49–59 (1955).

    Article  CAS  Google Scholar 

  21. B. Harrison, A. F. Dilwell, and C. Hallett, Plat. Met. Rev. 32, 73 (1988).

    CAS  Google Scholar 

  22. M. D. Mitchell and M. A. Vannice, Ind. Eng. Chem. Fund. 23, 88 (1984).

    Article  CAS  Google Scholar 

  23. Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986).

  24. K. G. Gartsman, N. F. Kartenko, B. T. Melekh, S. V. Nikitin, I. A. Smirnov, Yu. N. Filin, N. V. Sharenkova, A. T. Shunaev, B. Yu Khel’mer, and F. M. Ovsyannikov, Fiz. Tverd. Tela (Leningrad) [Sov. Phys. Solid State] 32, 1868–1870 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, A.D., Shelef, M. Oxygen availability in mixed cerium/praseodymium oxides and the effect of noble metals. Journal of Materials Research 9, 468–475 (1994). https://doi.org/10.1557/JMR.1994.0468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0468

Navigation