Skip to main content
Log in

The migration of interstitial H in diamond and its pairing with substitutional B and N: Molecular orbital theory

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present results of atom superposition and electron delocalization molecular orbital (ASED-MO) calculations of interactions of interstitial H with substitutional B and N in diamond. Nearest-neighbor and next-nearest-neighbor C atoms were relaxed in geometry depending on the cluster size, XC34H36 or XC70H60, respectively, where X = B or N and the H atoms saturate the surface dangling radical orbitals of the models. A small Jahn-Teller distortion occurs for interstitial B, a shallow acceptor which, in the B state, sits in a tetrahedral lattice site. For interstitial N distortions are large, with a long C-N distance which stabilizes a ŝ orbital that would otherwise be in the conduction band. This orbital has one electron in it and has its greatest amplitude on C; the bonding counterpart has its greatest amplitude on N and is similar to the N lone-pair orbital in amines. The calculations indicate that N is a deep donor and N+ relaxes to the tetrahedral lattice site. Interstitial H is a mid-band-gap donor and is possibly also an acceptor with a high 1.9 eV calculated activation energy barrier to migration. Interstitial H+ is expected to be very mobile, with a migration barrier of 0.1 eV. H is predicted to be relatively immobile with an activation barrier for migration of 2.5 eV. The mobility of bond-inserted H around B in BH pairs should be high, with a calculated activation energy of 0.13 eV, but for N the comparable process has an activation energy of 2.50 eV. In NH pairs the interstitial H has formed a bond with the radical orbital on the C, so donation would be from the lone-pair orbital on N, which lies deep in the band gap; hence, the donor property is passivated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Angus and C. C. Hayman, Science 241, 913 (1988); J. C. Angus, F. A. Buck, M. Sunkara, T. F. Groth, C. C. Hayman, and R. Gat, Mater. Res. Bull. XIV, 38 (1989).

    Article  CAS  Google Scholar 

  2. C. Kittel, Introduction to Solid State Physics (John Wiley, New York, 1986), p. 185.

    Google Scholar 

  3. A. T. Collins and E. C. Lightowlers, in The Properties of Diamond, edited by J. E. Field (Academic Press, London, 1979), p. 79.

    Google Scholar 

  4. R. M. Chrenko, Phys. Rev. B 7, 4560 (1973).

    Article  CAS  Google Scholar 

  5. W. J. Leivo and R. Smoluchowski, Phys. Rev. 98, 1532 (1955).

    CAS  Google Scholar 

  6. J. E. Brophy, Phys. Rev. 99, 1336 (1955).

    Article  CAS  Google Scholar 

  7. I. G. Austin and R. Wolfe, Proc. Phys. Soc. London B 69, 329 (1956); P. T. Wedepohl, Proc. Phys. Soc. London B 70, 177 (1957).

    Article  Google Scholar 

  8. G. Davies, J. Phys. C: Solid State Phys. 9, L537 (1976).

    Article  CAS  Google Scholar 

  9. J. A. van Wyk and J. H. N. Loubser, J. Phys. C: Solid State Phys. 16, 1501 (1983).

    Article  Google Scholar 

  10. R. Berman, P. R. W. Hudson, and M. Martinez, J. Phys. C: Solid State Phys. 8, L430 (1975).

    Article  CAS  Google Scholar 

  11. W. V. Smith, P. P. Sorokin, L. L. Gelles, and G. J. Lasher, Phys. Rev. 115, 1546 (1959).

    Article  CAS  Google Scholar 

  12. R. M. Chrenko, R. E. Tuft, and H. M. Strong, Nature 270, 141 (1977).

    Article  CAS  Google Scholar 

  13. J. F. Prins, Nucl. Instrum. Methods Phys. Res. B 35, 484 (1988).

    Article  Google Scholar 

  14. J. F. Prins, Phys. Rev. B 38, 5576 (1988).

    Article  CAS  Google Scholar 

  15. G. S. Sandhu, M. L. Swanson, and W. K. Chu, Appl. Phys. Lett. 55, 1397 (1989).

    Article  CAS  Google Scholar 

  16. N. Fujimori, T. Imai, and A. Doi, Vacuum 36, 99 (1986).

    Article  CAS  Google Scholar 

  17. J. Mort, D. Kuhman, M. Machonkin, M. Morgan, F. Jansen, K. Okumura, Y. M. LeGrice, and R. J. Nemanich, Appl. Phys. Lett. 55, 1121 (1989).

    Article  CAS  Google Scholar 

  18. K. Okumura, J. Mort, and M. Machonkin, Appl. Phys. Lett. 57, 1907 (1990).

    Article  CAS  Google Scholar 

  19. M. I. Landstrass and K. V. Ravi, Appl. Phys. Lett. 55, 1391 (1989).

    Article  CAS  Google Scholar 

  20. M. I. Landstrass and K. V. Ravi, Appl. Phys. Lett. 55, 975 (1989).

    Article  CAS  Google Scholar 

  21. S. J. Pearton, J. W. Corbett, and T. S. Shi, Appl. Phys. A 43, 153 (1987).

    Article  Google Scholar 

  22. C. T. Sah, J. Y. C. Sun, and J. J. T. Tzou, Appl. Phys. Lett. 43, 204 (1983); J. Appl. Phys. 54, 5864 (1983).

    Article  CAS  Google Scholar 

  23. J. I. Pankove, D. E. Carlson, J. E. Berkeyheiser, and R. O. Wance, Phys. Rev. Lett. 51, 2224 (1983); J. I. Pankove, R. O. Wance, and J. E. Berkeyheiser, Appl. Phys. Lett. 45, 1100 (1984); J. I. Pankove, P. J. Zanzucchi, C. W. Magee, and G. Lucovsky, Appl. Phys. Lett. 46, 421 (1985).

    Article  CAS  Google Scholar 

  24. N. M. Johnson and M. D. Moyer, Appl. Phys. Lett. 46, 787 (1985); N. M. Johnson, Phys. Rev. B 31, 5525 (1985); N. M. Johnson, Appl. Phys. Lett. 47, 874 (1985).

    Article  CAS  Google Scholar 

  25. J. C. Mikkelsen, Jr., Appl. Phys. Lett. 46, 882 (1985).

    Article  CAS  Google Scholar 

  26. A. J. Tavendale, A. A. Williams, and S. J. Pearton, Appl. Phys. Lett. 48, 590 (1986).

    Article  CAS  Google Scholar 

  27. K. Bergman, M. Stavola, S. J. Pearton, and J. Lopata, Phys. Rev. B 37, 2770 (1988).

    Article  CAS  Google Scholar 

  28. L. V. C. Assali and J. R. Leite, Phys. Rev. Lett. 55, 980 (1985).

    Article  CAS  Google Scholar 

  29. N. M. Johnson, C. Herring, and D. J. Chadi, Phys. Rev. Lett. 56, 769 (1986).

    Article  CAS  Google Scholar 

  30. P. J. H. Denteneer, C. G. Van de Walle, and S. T. Pantelides, Phys. Rev. B 39, 10809 (1989).

    Article  CAS  Google Scholar 

  31. a. J. P. F. Sellschop, Abstracts of the Diamond Conference, Bristol, U. K., 1987, p. 45. b. J. P. F. Sellschop, C. C. P. Madiba, and H. J. Annegan, Nucl. Instrum. Methods 168, 529 (1980).

  32. a. A. B. Anderson, J. Chem. Phys. 60, 2477 (1974); 62, 1187 (1975). b. A. B. Anderson, R. W. Grimes, and S. Y. Hong, J. Phys. Chem. 91, 4245 (1987).

    Article  CAS  Google Scholar 

  33. S. P. Mehandru, A. B. Anderson, and J. C. Angus, Prepr. Am. Chem. Soc. Div. Fuel Chem. 36 (3), 1053 (1991).

    CAS  Google Scholar 

  34. S. P. Mehandru, A. B. Anderson, and J. C. Angus, J. Mater. Res. 7, 689 (1992).

    Article  CAS  Google Scholar 

  35. S. P. Mehandru and A. B. Anderson, J. Mater. Res. 5, 2286 (1990); Carbon 28, 797 (1990).

    Article  CAS  Google Scholar 

  36. S. P. Mehandru and A. B. Anderson, Surf. Sci. 248, 369 (1991).

    Article  CAS  Google Scholar 

  37. J. C. Angus, Z. Li, M. Sunkara, R. Gat, A. B. Anderson, S. P. Mehandru, and M. W. Geis, Proc. 2nd Int. Symp. on Diamond and Diamond-Like Materials, Washington, DC, May 5–10, 1991 (Electrochemical Society, Pennington, NJ, 1991), Vol. 91–98, pp. 125–141.

    Google Scholar 

  38. a. W. Lotz, J. Opt. Soc. Am. 60, 206 (1970). b. E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).

    Article  CAS  Google Scholar 

  39. K. Nath and A. B. Anderson, Solid State Commun. 66, 277 (1988); Phys. Rev. B 41, 5652 (1990).

    Article  CAS  Google Scholar 

  40. R. P. Messmer and G. D. Watkins, Phys. Rev. B 7, 2568 (1973).

    Article  CAS  Google Scholar 

  41. K. Jackson, M. R. Pederson, and J. G. Harrison, Phys. Rev. B 41, 12641 (1990).

    Article  CAS  Google Scholar 

  42. A. Mainwood, J. Phys. C: Solid State Phys. 12, 2543 (1979).

    Article  CAS  Google Scholar 

  43. N. Sahoo, K. C. Mishra, M. van Rossum, and T. P. Dass, Hyperfine Interact. 35, 701 (1987).

    Article  CAS  Google Scholar 

  44. J. Bernholc, S. A. Kajihara, and A. Antonelli, in New Diamond Science and Technology, edited by R. Messier, J. T. Glass, J. E. Butler, and R. Roy (Mater. Res. Soc. Symp. Int. Proc. NDST2-C3, Pittsburgh, PA, 1991), p. 923; S. A. Kajihara, A. Antonelli, J. Bernholc, and R. Car, Phys. Rev. Lett. 66, 2010 (1991).

  45. P. R. Briddon, M. I. Heggie, and R. Jones, as in Ref. 44, p. 63.

  46. S. C. Erwin and W. E. Pickett, Phys. Rev. B 42, 11056 (1990).

    Article  CAS  Google Scholar 

  47. M. Astier, N. Pottier, and J. C. Bourgoin, Phys. Rev. B 19, 5265 (1979).

    Article  CAS  Google Scholar 

  48. G. B. Bachelet, G. A. Baraff, and M. Schlüter, Phys. Rev. B 24, 4736 (1981).

    Article  CAS  Google Scholar 

  49. P. A. Shultz and R. P. Messmer, Phys. Rev. B 34, 2532 (1986).

    Article  Google Scholar 

  50. A. J. Tavendale, D. Alexiev, and A. A. Williams, Appl. Phys. Lett. 47, 316 (1985).

    Article  CAS  Google Scholar 

  51. C. H. Seager and R. A. Anderson, Appl. Phys. Lett. 53, 1181 (1988).

    Article  CAS  Google Scholar 

  52. J. E. McMurray and T. Lectka, Acc. Chem. Res. 25, 47 (1992).

    Article  Google Scholar 

  53. S. T. Pantelides, Appl. Phys. Lett. 50, 995 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehandru, S.P., Anderson, A.B. The migration of interstitial H in diamond and its pairing with substitutional B and N: Molecular orbital theory. Journal of Materials Research 9, 383–395 (1994). https://doi.org/10.1557/JMR.1994.0383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0383

Navigation