Skip to main content
Log in

Elevated temperature mechanical behavior of CoSi and particulate reinforced CoSi produced by spray atomization and co-deposition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Monolithic CoSi and TiB2 reinforced CoSi materials were produced by spray atomization and co-deposition. The creep behavior of both materials at elevated temperature was investigated. The unreinforced material of grain size ≍25 μm exhibited a stress exponent of three, activation energy for creep of 320 kJ/mole, dislocation substructure of homogeneously distributed dislocations, and inverse creep transients upon stress increases. These results suggest that the creep behavior of CoSi is controlled by a dislocation glide mechanism. In contrast, the reinforced material of a finer grain size (≍10 μm) exhibited a stress exponent of unity, activation energy for creep of 240 kJ/mole, and negligible creep transients upon stress increases, suggesting that the creep behavior of the reinforced material is controlled by a diffusional creep mechanism. The creep resistance of the reinforced material was lower than that for the unreinforced material. This is a result of the finer grain size and higher porosity in the reinforced material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Meschter, Scripta Metall. Mater. 25, 1065 (1991).

    Article  CAS  Google Scholar 

  2. J. M. Yang, W. Kai, and S. M. Jeng, Scripta Metall. Mater. 24, 1953 (1989).

    Article  Google Scholar 

  3. C. H. Henager, Jr., J. L. Brimhall, and J. P. Hirth, Scripta Metall. 26, 585 (1992).

    Article  CAS  Google Scholar 

  4. F. D. Gac and J. J. Petrovic, J. Am. Ceram. Soc. 68 (8), C-200 (1985).

    Article  CAS  Google Scholar 

  5. R. M. Aiken, Jr., Ceram. Eng. Sci. Proc. 12 (9–10), 1643 (1991).

    Article  Google Scholar 

  6. K. Sadananda, H. Jones, J. Feng, J. J. Petrovic, and A. K. Vasudévan, Ceram. Eng. Sci. Proc. 12 (9–10), 1671 (1991).

    Article  CAS  Google Scholar 

  7. S. M. Wiederhorn, R. J. Gettings, D. E. Roberts, C. Ostertag, and J. J. Petrovic, Mater. Sci. Eng. A 155, 209 (1992).

    Article  Google Scholar 

  8. K. Sadananda, C. R. Feng, H. Jones, and J. J. Petrovic, Mater. Sci. Eng. A 155, 227 (1992).

    Article  Google Scholar 

  9. X. Liang, J. C. Earthman, E. J. Lavernia, Acta Metall. Mater. 40, 11 (1992).

    Article  Google Scholar 

  10. B. P. Bewlay and B. Cantor, J. Mater. Res. 6, 1433 (1991).

    Article  CAS  Google Scholar 

  11. R. Machler, P. J. Uggowitzet, C. Solenthaler, R. M. Pedrazzoli, and H. O. Speidel, Mater. Sci. Technol. 7, 447 (1991).

    Article  Google Scholar 

  12. J. Baram, Metall. Trans. 22A, 2515 (1991).

    Article  CAS  Google Scholar 

  13. M. Gupta, F. A. Mohamed, and E. J. Lavernia, Metall. Trans. 23A, 831 (1992).

    Article  CAS  Google Scholar 

  14. S. Haviprasad, S. M. L. Sastry, K. L. Jernia, and R. J. Lederich, Metall. Trans. 24A, 865 (1993).

    Article  Google Scholar 

  15. R. P. Singh, A. Lawley, S. Freidman, and Y. V. Murty, Mater. Sci. Eng. A 145, 243 (1991).

    Article  Google Scholar 

  16. P. Lengsfeld and E. J. Lavernia, current research, University of California, Irvine.

  17. E. J. Lavernia, E. Gutierrez, and J. Baram, Mater. Sci. Eng. A 132, 119 (1991).

    Article  Google Scholar 

  18. E. J. Lavernia, E. Gomez, and N. J. Grant, Mater. Sci. Eng. 95, 251 (1987).

    Article  Google Scholar 

  19. S. Annavarapu, D. Apelian, and A. Lawley, Metall. Trans. 19A, 3077 (1988).

    Article  CAS  Google Scholar 

  20. I. Ucock, T. Ando, and N. J. Grant, Mater. Sci. Eng. A 145, 284 (1991).

    Article  Google Scholar 

  21. Y. Ikawa, T. Itami, K. Kumagai, Y. Kawashima, A. G. Leatham, J. S. Coombs, and R. J. Brooks, J. Iron Steel Inst. Jpn. 30 (9), 756 (1990).

    Article  CAS  Google Scholar 

  22. S. Annavarapu, D. Apelian, and A. Lawley, Metall. Trans. 21A, 3237 (1990).

    Article  CAS  Google Scholar 

  23. A. L. Moran and W. A. Palko, J. Metals 40 (12), 12 (1988).

    CAS  Google Scholar 

  24. D. G. Morris and M. A. Morris, J. Mater. Res. 6, 361 (1991).

    Article  CAS  Google Scholar 

  25. X. Liang, J. C. Earthman, and E. J. Lavernia, Mater. Sci. Eng. A 153, 646 (1992).

    Article  Google Scholar 

  26. R. Vetter, L. Z. Zhuang, I. Majewska-Glabus, and J. Duszczyk, Scripta Metall. Mater. 24, 2025 (1990).

    Article  Google Scholar 

  27. E. J. Lavernia, J. A. Ayers, and T. S. Srivatsan, Int. Mater. Rev. 37, 1 (1992).

    Article  CAS  Google Scholar 

  28. M. Gupta, F. A. Mohamed, and E. J. Lavernia, Mater. Sci. Eng. A 144, 99 (1991).

    Article  Google Scholar 

  29. M. Gupta, J. Juarez-Islas, W. E. Frazier, F. A. Mohamed, and E. J. Lavernia, Metall. Trans. 23B, 719 (1992).

    Article  CAS  Google Scholar 

  30. E. J. Lavernia, Int. J. Rapid Solid. 5, 47 (1989).

    CAS  Google Scholar 

  31. J. Llorca, A. Martin, J. Ruiz, and M. Elices, Metall. Trans. 24A, 1575 (1993).

    Article  CAS  Google Scholar 

  32. T. C. Willis, Metals Mater. 4 (8), 485 (1988).

    CAS  Google Scholar 

  33. A. R. E. Singer, Met. Powder Rep. 3, 223 (1986).

    Google Scholar 

  34. J. White, I. G. Palmer, I. R. Hughes, and S. A. Court, in Aluminum-Lithium Alloys, edited by E. A. Starke, Jr. (Materials and Component Engineering Publications, Birmingham, U. K., 1989), Vol. 5, p. 1635.

    Google Scholar 

  35. K. A. Kojima, R. E. Lewis, and M. J. Kaufman, in Aluminum-Lithium Alloys, edited by T. H. Sanders, Jr. and E. A. Starke, Jr. (Materials and Component Engineering Publications, Birmingham, U. K., 1989), Vol. 1, p. 85.

    Google Scholar 

  36. Y. Wu and E. J. Lavernia, Metall. Trans. 23A, 2923 (1992).

    Article  CAS  Google Scholar 

  37. R. Perez, J. Zhang, M. Gungor, and E. J. Lavernia, Metall. Trans. 24A, 701 (1993).

    Article  CAS  Google Scholar 

  38. G. Frommeyer, R. Rosenkranz, and C. Ludecke, Z. Metallk. 18, 307 (1991).

    Google Scholar 

  39. R. R. Vandervoort, A. K. Mukherjee, and J. E. Dorn, ASM 59, 930 (1966).

    CAS  Google Scholar 

  40. J. Wolfenstine, H. K. Kim, and J. C. Earthman, Scripta Metall. Mater. 26, 1823 (1992).

    Article  CAS  Google Scholar 

  41. J. Wolfenstine, J. Mater. Sci. Lett. 9, 1091 (1990).

    Article  CAS  Google Scholar 

  42. M. Rudy and G. Sauthoff, Mater. Sci. Eng. 81, 525 (1986).

    Article  CAS  Google Scholar 

  43. D. L. Yaney and W. D. Nix, J. Mater. Sci. 23, 3088 (1986).

    Article  Google Scholar 

  44. W. R. Cannon and O. D. Sherby, Metall. Trans. 1, 1030 (1970).

    CAS  Google Scholar 

  45. F. A. Mohamed and T. G. Langdon, Acta Metall. 22, 779 (1974).

    Article  CAS  Google Scholar 

  46. M. Pahutova and J. Cadek, Phys. Status Solidi A 56, 305 (1979).

    Article  CAS  Google Scholar 

  47. F. A. Mohamed, Mater. Sci. Eng. 61, 149 (1983).

    Article  CAS  Google Scholar 

  48. S. H. Hong and J. Weertman, Acta Metall. 34, 743 (1986).

    Article  CAS  Google Scholar 

  49. K. J. Hemker, M. J. Mills, and W. D. Nix, Acta Metall. Mater. 39, 1901 (1991).

    Article  CAS  Google Scholar 

  50. J. Weertman, J. Appl. Phys. 28, 1185 (1957).

    Article  Google Scholar 

  51. J. Weertman and J. R. Weertman, in Physical Metallurgy, edited by R. W. Chan (North-Holland, Amsterdam, The Netherlands, 1965), p. 1002.

    Google Scholar 

  52. A. K. Mukherjee and J. E. Dorn, J. Inst. Met. 93, 397 (1964–65).

    Google Scholar 

  53. P. A. Flinn, Trans. Metall. Soc. AIME 233, 714 (1960).

    Google Scholar 

  54. P. L. Martin, M. G. Mendiratta, and H. A. Lipsitt, Metall. Trans. 14A, 2876 (1983).

    Google Scholar 

  55. J. D. Whittenberger, J. Mater. Sci. 22, 394 (1987).

    Article  CAS  Google Scholar 

  56. F. R. N. Nabarro, in Report From The Conference on The Strength of Solids (Physics Society, London, 1948), p. 75.

    Google Scholar 

  57. C. Herring, J. Appl. Phys. 21, 437 (1950).

    Article  Google Scholar 

  58. R. L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  59. S. V. Raj and T. G. Langdon, Acta Metall. 37, 843 (1989).

    Article  CAS  Google Scholar 

  60. O. A. Ruano, A. K. Miller, and O. D. Sherby, Mater. Sci. Eng. 51, 9 (1981).

    Article  CAS  Google Scholar 

  61. H. J. Frost and M. F. Ashby, Deformation Mechanism Maps (Pergamon Press, Oxford University, 1982).

  62. A. K. Ghosh, A. Basu, and H. Kung, in Intermetallic Matrix Composites II, edited by D. B. Miracle, D. L. Anton, and J. A. Graves (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 259.

  63. J. D. Whittenberger, R. S. Viswanadham, S. K. Mannan, and K. S. Kumar, J. Mater. Res. 4, 1164 (1989).

    Article  CAS  Google Scholar 

  64. M. S. DiPietro, K. S. Kumar, and J. D. Whittenberger, J. Mater. Res. 6, 530 (1991).

    Article  Google Scholar 

  65. K. S. Kumar, M. S. DiPietro, and J. D. Whittenberger, Acta Metall. Mater. 41, 1379 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskin, D., Wolfenstine, J. & Lavernia, E.J. Elevated temperature mechanical behavior of CoSi and particulate reinforced CoSi produced by spray atomization and co-deposition. Journal of Materials Research 9, 362–371 (1994). https://doi.org/10.1557/JMR.1994.0362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0362

Navigation