Skip to main content
Log in

Elastic strain gradients and x-ray line broadening effects as a function of temperature in aluminum thin films on silicon

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Grazing incidence x-ray scattering (GIXS) with a synchrotron source was used to measure elastic strain gradients as a function of temperature in aluminum and aluminum alloy thin films of different thicknesses on silicon. The stresses in the films are induced as a result of the difference in thermal expansion coefficient between film and substrate. Disregarding minor deviations at the surface, it is shown that there are no gross strain gradients in these films in the range of temperatures (between room temperature and 400 °C) considered. Significant x-ray line broadening effects were observed, suggesting an accumulation of dislocations on cooling the films and their annealing out as the films were being reheated. The variation of the dislocation density during thermal cycling compares well in nature with that of the concurrent variation in film stress, indicating that large strain hardening effects contribute toward the film flow stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Gardner and P. A. Flinn, IEEE Trans. Electron Dev. 35, 2160 (1988).

    Article  CAS  Google Scholar 

  2. P. A. Flinn, D. S. Gardner, and W. D. Nix, IEEE Trans. Electron Dev. ED-34, 689 (1987).

    Article  Google Scholar 

  3. F. J. von Preissig, J. Appl. Phys. 66, 4262 (1989).

    Article  Google Scholar 

  4. M. Murakami, Acta Metall. 26, 175 (1978).

    Article  CAS  Google Scholar 

  5. C. V. Thompson, Ann. Rev. Mater. Sci. 20, 245 (1990).

    Article  CAS  Google Scholar 

  6. M. S. Jackson and Che-Yu Li, Acta Metall. 30, 1993 (1982).

    Article  CAS  Google Scholar 

  7. M. L. Ovecoglu, D. M. Barnett, and W. D. Nix, Acta Metall. 35, 2947 (1987).

    Article  CAS  Google Scholar 

  8. M. F. Doerner and S. Brennan, J. Appl. Phys. 63, 126 (1988).

    Article  CAS  Google Scholar 

  9. C. J. Shute and J. B. Cohen, J. Appl. Phys. 70, 2104 (1991).

    Article  CAS  Google Scholar 

  10. W. C. Marra, P. Eisenberger, and A. Y. Cho, J. Appl. Phys. 50, 6927 (1979).

    Article  CAS  Google Scholar 

  11. S. Brennan, Surf. Sci. 152/153, 1 (1985).

    Article  Google Scholar 

  12. A. Segmüller, Thin Solid Films 154, 33 (1987).

    Article  Google Scholar 

  13. M. F. Toney, T. C. Huang, S. Brennan, and Z. Rek, J. Mater. Res. 3, 351 (1988).

    Article  CAS  Google Scholar 

  14. P. H. Fuoss, L. J. Norton, S. Brennan, and A. Fischer-Colbrie, Phys. Rev. Lett. 60, 600 (1988).

    Article  CAS  Google Scholar 

  15. P. H. Fuoss and S. Brennan, Ann. Rev. Mater. Sci. 20, 365 (1990).

    Article  CAS  Google Scholar 

  16. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, U. K., 1980).

    Google Scholar 

  17. G. H. Vineyard, Phys. Rev. B 26, 4146 (1982).

    Article  CAS  Google Scholar 

  18. A. Fischer-Colbrie, Ph. D. Thesis, Stanford University (1986).

  19. R. Delhez, Th. H. de Keijser, and E. J. Mittemeijer, Surf. Eng. 3, 331 (1987).

    Article  CAS  Google Scholar 

  20. S. Brennan, Rev. Sci. Instrum. 63, 992 (1992).

    Article  Google Scholar 

  21. S. Brennan and P. L. Cowan, Rev. Sci. Instrum. 63, 850 (1992).

    Article  Google Scholar 

  22. P. A. Flinn and G. A. Waychunas, J. Vac. Sci. Technol. B 6, 1749 (1988).

    Article  CAS  Google Scholar 

  23. R. Venkatraman, P. W. Davies, P. A. Flinn, D. B. Fraser, W. D. Nix, and J. C. Bravman, J. Electron. Mater. 19, 1231 (1990).

    Article  CAS  Google Scholar 

  24. I. C. Noyan and J. B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation (Springer-Verlag, New York, 1987).

    Book  Google Scholar 

  25. American Institute of Physics Handbook, Chap. 4f, edited by D. E. Gray (McGraw-Hill, New York, 1963).

  26. I. C. Noyan and C. C. Goldsmith, Adv. X-ray Anal. 33, 137 (1990).

    CAS  Google Scholar 

  27. M. A. Korhonen, C. A. Paszkiet, R. D. Black, and C-Y. Li, Scripta Metall. 24, 2297 (1990).

    Article  CAS  Google Scholar 

  28. A. I. Sauter, Ph. D. Thesis, Stanford University (1988).

  29. T. S. Kuan and M. Murakami, Metall. Trans. A 13A, 383 (1982).

    Article  CAS  Google Scholar 

  30. P. Chaudhari, Philos. Mag. 39, 507 (1979).

    Article  CAS  Google Scholar 

  31. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978).

    Google Scholar 

  32. B. E. Warren, X-ray Diffraction (Addison-Wesley, Reading, MA, 1969).

    Google Scholar 

  33. R. Venkatraman and J. C. Bravman, J. Mater. Res. 7, 2040 (1992).

    Article  CAS  Google Scholar 

  34. G. E. Dieter, Mechanical Metallurgy (McGraw-Hill, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatraman, R., Besser, P.R., Bravman, J.C. et al. Elastic strain gradients and x-ray line broadening effects as a function of temperature in aluminum thin films on silicon. Journal of Materials Research 9, 328–335 (1994). https://doi.org/10.1557/JMR.1994.0328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0328

Navigation