Skip to main content
Log in

Microstructure and superconducting properties of attrition-milled Bi2Sr2CaCu2Ox

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructure and superconducting properties of Bi2Sr2CaCu2Ox (Bi-2212) during high-energy attrition milling were investigated in detail by a combination of x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and magnetization techniques. The starting superconducting powder was milled in a standard laboratory attritor using yttria-stabilized ZrO2 balls and a stainless steel tank. After selected time increments, the milling was interrupted and a small quantity of milled powder was removed for further analysis. It was found that the deformation process rapidly refines Bi-2212 into nanometer-size crystallites, increases atomic-level strains, and changes the plate-like morphology of Bi-2212 to granular submicron clusters. At short milling times, the deformation seems localized at weakly linked Bi-O double layers, leading to twist/cleavage fractures along the {001} planes. The Bi-2212 phase decomposes into several bismuth-based oxides and an amorphous phase after excessive deformation. The superconducting transition is depressed by about 10 K in the early stages of milling and completely vanishes upon prolonged deformation. A deformation mechanism is proposed and correlated with the evolution of superconducting properties. The practical implications of these results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Johnson, Prog. Mater. Sci. 30, 81 (1986).

    Article  CAS  Google Scholar 

  2. A. W. Weeber and H. Bakker, Phys. B 153, 93 (1988).

    Article  CAS  Google Scholar 

  3. C. C. Koch, Mater. Sci. Forum 88–90, 243 (1992).

    Article  Google Scholar 

  4. K. Matsuzaki, A. Inoue, and T. Masumoto, Jpn. J. Appl. Phys. 27, L779 (1988).

    Article  CAS  Google Scholar 

  5. J. S. Luo, D. Michel, and J-P. Chevalier, J. Am. Ceram. Soc. 75, 282 (1992).

    Article  CAS  Google Scholar 

  6. S. N. Sinha and H. G. Lee, Trans. IEEE 3, 1161 (1993).

    Google Scholar 

  7. H. W. Park and S. N. Sinha, Appl. Supercon. 1, 157 (1993).

    Article  CAS  Google Scholar 

  8. F. Lavallee, M. Simoneau, and G. L’Espérance, Phys. Rev. B 44, 12003 (1991).

    Article  CAS  Google Scholar 

  9. T. Kanai, T. Kamo, and S-P. Matsuda, Jpn. J. Appl. Phys. 29, L412 (1990).

    Article  CAS  Google Scholar 

  10. M. Awano, K. Kani, Y. Kodama, H. Takagi, and Y. Kuwahara, Jpn. J. Appl. Phys. 29, L254 (1990).

    Article  CAS  Google Scholar 

  11. H. E. Schaefer, R. Wurschurr, R. Birringer, and H. Gleiter, J. Less-Comm. Met. 140, 161 (1988).

    Article  CAS  Google Scholar 

  12. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987).

    Article  CAS  Google Scholar 

  13. R. W. Siegel, MRS Bull. No. 10, 60 (1990).

    Article  Google Scholar 

  14. J. S. Luo, N. Merchant, V. A. Maroni, D. M. Gruen, B. S. Tani, W. L. Carter, G. N. Riley, Jr., and K. H. Sandhage, Appl. Supercon. 1, 101 (1993).

    Article  CAS  Google Scholar 

  15. G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1958).

    Article  Google Scholar 

  16. A. Guinier, X-ray Diffraction (Freeman, San Francisco, CA, 1963).

    Google Scholar 

  17. J. M. Tarasçon, Y. LePage, P. Barboux, B. G. Bagley, L. H. Greene, W. R. McKinnon, G. W. Hull, M. Giroud, and D. M. Hwang, Phys. Rev. B 37, 9382 (1988).

    Article  CAS  Google Scholar 

  18. E. Hellstern, H. J. Fecht, Z. Fu, and W. L. Johnson, J. Appl. Phys. 65, 305 (1989).

    Article  CAS  Google Scholar 

  19. J. S. Luo, F. Faudot, J-P. Chevalier, R. Portier, and D. Michel, J. Solid State Chem. 89, 94 (1990).

    Article  CAS  Google Scholar 

  20. B. Raveau, C. Michel, M. Hervieu, and D. Groult, Crystal Chemistry of High-Tc Superconducting Copper Oxides (Springer-Verlag, New York, 1992).

    Google Scholar 

  21. M. H. Whangbo and C. C. Torardi, Science 249, 1143 (1990).

    Article  CAS  Google Scholar 

  22. D. Shi, K. C. Goretta, J. G. Chen, and S. Salem-Sugui, Jr., High-Temperature Superconducting Compounds No. III (TMS Proceedings, Warrendale, PA, 1991).

    Google Scholar 

  23. W. K. Kwok, U. Welp, G. W. Crabtree, K. G. Vandervoort, R. Hulscher, and J. Z. Liu, Phys. Rev. Lett. 64, 966 (1990).

    Article  CAS  Google Scholar 

  24. E. M. Chudnovsky, Phys. Rev. Lett. 65, 3060 (1990).

    Article  CAS  Google Scholar 

  25. J. S. Luo, H. Lee, and S. Sinha, in Nanophase and Nanocomposite Materials, edited by S. Komarneni, J. C. Parker, and G. J. Thomas (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 55.

  26. D. J. Miller, S. Sengupta, D. Shi, J. D. Hettinger, K. E. Gray, A. S. Nash, and K. C. Goretta, Appl. Phys. Lett. 63, 2823 (1992).

    Article  Google Scholar 

  27. D. Larbalestier, MRS Bull. No. 8, 16 (1992).

    Article  Google Scholar 

  28. K. H. Sandhage, G. N. Riley, Jr., and W. L. Carter, JOM 43, 21 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J.S., Lee, H.G. & Sinha, S.N. Microstructure and superconducting properties of attrition-milled Bi2Sr2CaCu2Ox. Journal of Materials Research 9, 297–304 (1994). https://doi.org/10.1557/JMR.1994.0297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0297

Navigation