Skip to main content
Log in

Identification of hydrocarbon precursors to diamond in chemical vapor deposition using carbon monoxide reagent

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Diamond films were grown by microwave plasma-assisted chemical vapor deposition using mixtures of 13CH4 and CO. Mass spectrometry was used to identify CO, CH4, and C2H2 as the stable gaseous products in the reactor exhaust gas. By comparing gaseous 13C compositions with that of the diamond films, the efficiency of diamond growth from methane (possibly via the methyl radical) is found to be about two orders of magnitude higher than that for carbon monoxide. Most of the diamond that is formed from the CO reagent results from the conversion of CO to hydrocarbons. The conversion of CO to hydrocarbons is attributed to activation of CO by high-energy electrons in the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. Celii and J. E. Butler, Annu. Rev. Phys. Chem. 42, 643 (1991).

    Article  CAS  Google Scholar 

  2. C. E. Johnson, W. A. Weimer, and F. M. Cerio, J. Mater. Res. 7, 1427 (1992).

    Article  CAS  Google Scholar 

  3. S.J. Harris and L.R. Martin, J. Mater. Res. 5, 2313 (1990), and references therein. This paper briefly reviews the literature.

    Article  CAS  Google Scholar 

  4. L.R. Martin and M.W. Hill, J. Mater. Sci. Lett. 9, 621 (1990).

    Article  CAS  Google Scholar 

  5. M.P. D’Evelyn, C.J. Chu, R.H. Hauge, and J.L. Margrave, J. Appl. Phys. 71, 1528 (1992).

    Article  Google Scholar 

  6. W. A. Yarbrough, K. Tankala, and T. DebRoy, J. Mater. Res. 7, 379 (1992).

    Article  CAS  Google Scholar 

  7. S. J. Harris and A. M. Weiner, Thin Solid Films 212, 201 (1992).

    Article  CAS  Google Scholar 

  8. K. Ito, T. Ito, and I. Hosoya, Chem. Lett. 589 (1988).

    Google Scholar 

  9. Y. Saito, H. Tanaka, Y. Sato, and K. Fujita, Japanese Patent 62265198 (1987).

  10. J. Suzuki, H. Kawarada, K. Mar, J. Wei, Y. Yokota, and A. Hiraki, Jpn. J. Appl. Phys. 28, L281 (1989).

    Article  CAS  Google Scholar 

  11. R.J. Graham, J.B. Posthill, R.A. Rudder, and R.J. Markunas, Appl. Phys. Lett. 59, 2463 (1991).

    Article  CAS  Google Scholar 

  12. K. Aoyama, H. Uyama, and O. Matsumoto, J. Electrochem. Soc. 139, 2253 (1992).

    Article  CAS  Google Scholar 

  13. Y. Saito, K. Sato, K. Gomi, and H. Miyadera, J. Mater. Sci. 25, 1246 (1990).

    Article  CAS  Google Scholar 

  14. Y. Saito, K. Sato, S. Matuda, and H. Koinuma, J. Mater. Sci. 26, 2937 (1991).

    Article  CAS  Google Scholar 

  15. Y. Muranaka, H. Yamashita, K. Sato, and H. Miyadera, J. Appl. Phys. 67, 6247 (1990).

    Article  CAS  Google Scholar 

  16. Y. Muranaka, H. Yamashita, and H. Miyadera, Thin Solid Films 195, 257 (1991).

    Article  CAS  Google Scholar 

  17. Y. Muranaka, H. Yamashita, and H. Miyadera, J. Appl. Phys. 69, 8145 (1991).

    Article  CAS  Google Scholar 

  18. Y. Muranaka, H. Yamashita, and H. Miyadera, J. Cryst. Growth 112, 808 (1991).

    Article  CAS  Google Scholar 

  19. M. Nunotani, M. Komori, M. Yamasawa, Y. Fujiwara, K. Sakuta, T. Kobayashi, S. Nakashima, S. Minomo, M. Taniguchi, and M. Sugiyo, Jpn. J. Appl. Phys. 30, LI 199 (1991).

    Article  CAS  Google Scholar 

  20. F.M. Cerio, W.A. Weimer, and C.E. Johnson, J. Mater. Res. 7, 1195 (1992).

    Article  CAS  Google Scholar 

  21. W.A. Weimer, F.M. Cerio, and C.E. Johnson, J. Mater. Res. 6, 2134 (1991).

    Article  CAS  Google Scholar 

  22. Y. Liou, A. Inspektor, R. Weimer, D. Knight, and R. Messier, J. Mater. Res. 5, 2305 (1990).

    Article  CAS  Google Scholar 

  23. K. Takeuchi and T. Yoshida, J. Appl. Phys. 71, 2636 (1992).

    Article  CAS  Google Scholar 

  24. R. Mach, H. Drost, G. Dube, and H. J. Spangenber, Beitr. Plasma-phys. 23, 595 (1983).

    Article  CAS  Google Scholar 

  25. N. Hayashi, Y. Etoh, T. Kazahaya, S. Katsumata, and M. Aketagawa, in New Diamond Science and Technology, edited by R. Messier, J. T. Glass, J. E. Butler, and R. Roy (Mater. Res. Soc. Int. Symp. Proc. NDST-2, Pittsburgh, PA, 1991), p. 473.

  26. T. Mitomo, T. Ohta, E. Kondoh, and K. Ohtsuka, J. Appl. Phys. 70, 4532 (1991).

    Article  CAS  Google Scholar 

  27. Y. Muranaka, H. Yamashita, and H. Miyadera, J. Mater. Sci. 26, 3235 (1991).

    Article  CAS  Google Scholar 

  28. Y. Muranaka, H. Yamashita, and H. Miyadera, J. Vac. Sci. Technol. A 9, 76 (1991).

    Article  CAS  Google Scholar 

  29. W.F. Banholzer and T.R. Anthony, Thin Solid Films 212, 1 (1992).

    Article  CAS  Google Scholar 

  30. C. E. Johnson and W. A. Weimer, in Diamond Optics V, edited by A. Feldman and S. Holly (Proc. SPIE, 1759, San Diego, CA, 1992), p. 36.

    Chapter  Google Scholar 

  31. A Gibbs free energy minimization software package was provided by R. J. Kee, Sandia Natl. Lab., Livermore, CA.

  32. F. M. Cerio and W. A. Weimer, Appl. Phys. Lett. 59, 3387 (1991).

    Article  CAS  Google Scholar 

  33. In a hot filament reactor a feed gas of 1.5% O2 and 3% CH4 in H2 produced CO as the dominant product and essentially no C2H2 was present. M. Sommer and F. W. Smith, in New Diamond Science and Technology, edited by R. Messier, J. T. Glass, J. E. Butler, and R. Roy (Mater. Res. Soc. Int. Symp. Proc. NDST-2, Pittsburgh, PA, 1991), p. 443.

  34. K. M. McNamara and K. K. Gleason, J. Appl. Phys. 71, 2884 (1992).

    Article  CAS  Google Scholar 

  35. R.E. Ferguson, Combustion and Flame 1, 431 (1957).

    Article  CAS  Google Scholar 

  36. S. F. Mertz, M. C. Hawley, and J. Asmussen, IEEE Trans. Plasma Sci. PS-4, 11 (1976), and references therein.

    Article  Google Scholar 

  37. P. K. Bachmann, D. Leers, and H. Lydtin, Diamond and Related Materials 1, 1 (1991).

    Article  CAS  Google Scholar 

  38. H. Rau and F. Picht, J. Mater. Res. 7, 934 (1992).

    Article  CAS  Google Scholar 

  39. J. H. D. Rebello, D. L. Straub, and V. V. Subramaniam, J. Appl. Phys. 72, 1133 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, C.E., Weimer, W.A. Identification of hydrocarbon precursors to diamond in chemical vapor deposition using carbon monoxide reagent. Journal of Materials Research 8, 2245–2249 (1993). https://doi.org/10.1557/JMR.1993.2245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.2245

Navigation