Skip to main content
Log in

Nucleation of CVD-TiN on tungsten

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using Chemical Vapor Deposition (CVD), TiN was deposited on sharp tungsten needles. The reactant gases were TiCl4, N2, and H2. A Transmission Electron Microscopy (TEM) investigation revealed that the first nuclei of the CVD–TiN coating on tungsten did not consist of δ–TiN, but were a mixture of α–TiN and δ–TiN. These results were also verified with x-ray measurements. From these experimental results a possible mechanism for the initial growth of TiN on tungsten is suggested. It may be that the change in relative concentrations of the different titanium nitrides suggested as mechanism of the initial growth of CVD–TiN can be applied in general for all TiCl4/H2/N2/metal systems where the original substrate surface material partly or completely consists of a metal with catalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Molarius, A. S. Korhonen, and E. O. Ristolainen, J. Vac. Sci. Technol. A 3 (6), 2419 (1985).

    Article  CAS  Google Scholar 

  2. B. Bushan and B. K. Gupta, Handbook of Tribology (McGraw-Hill, Inc., New York, 1991).

    Google Scholar 

  3. T.C. Jung, C.E. Bao, and M.H. Fang, Trans. Inst. Min. Metall. C 95, 63 (1986).

    Google Scholar 

  4. T.C. Jung, D.Y. Sheng, and M.H. Fang, in Proc. 10th Int. Conf. on Chemical Vapour Deposition, edited by G. W. Cullen (1987).

  5. S. Vuorinen and J. Skogsmo, in Surface Modification Technologies, edited by T. S. Sudarshan and D. G. Bhat (The Metallurgical Society, Warrendale, PA, 1988), p. 143.

    Google Scholar 

  6. J. Skogsmo, A. Henjered, H. Nordén, and K. G. Stjernberg, Refractory and Hard Metals 6 (2), 84 (1987).

    CAS  Google Scholar 

  7. A. Kato and N. Tamari, J. Cryst. Growth 29, 55 (1975).

    Article  CAS  Google Scholar 

  8. K. Glejbøl, N. N. Hamawi, and A. R. Thölén, Micron and Microscopica Acta 22 (1/2), 127 (1991).

    Google Scholar 

  9. J. P. Song, N. N. Hamawi, K. Glejbøl, K. A. M0rch, A. R. Thölén, and L. N. Christensen, Rev. Sci. Instrum (in press).

  10. J. Valli, J. Vac. Sci. Technol. A 4 (6), 3007 (1986).

    Article  CAS  Google Scholar 

  11. W. A. Bryant, J. Electrochem. Soc. 125 (9), 1534 (1978).

    Article  CAS  Google Scholar 

  12. O.V. Roman, L.M. Kirilyuk, G.N. Dubrovskaya, V.N. Anikin, and A.I. Anikeyev, Powder Metall. Int. 13 (4), 192 (1981).

    CAS  Google Scholar 

  13. H.E. Swanson and E. Tatge, Natl. Bur. Stand. (U.S.), Circ. 539, 1, 28 (1953).

    Google Scholar 

  14. W. Wong-Ng, H. McMurdie, B. Paretzkin, C. Hubbard, and A. Dragoo, Powder Diffraction 2, 200 (1987).

    Google Scholar 

  15. W. Lengauer and P. Ettmayer, J. Mater. Sci. Eng. 105/106, 257 (1988).

    Article  Google Scholar 

  16. G. Lobier and J. P. Marcon, C. R. Seances Acad. Sci. (Paris) 268, 1132 (1969).

    CAS  Google Scholar 

  17. CRC Handbook of Chemistry and Physics, edited by R. C. Weast, M. J. Astle, and W. H. Beyer (CRC Press, Boca Raton, FL, 1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glejb⊘l, K., Pryds, N.H. & Thölén, A.R. Nucleation of CVD-TiN on tungsten. Journal of Materials Research 8, 2239–2244 (1993). https://doi.org/10.1557/JMR.1993.2239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.2239

Navigation