Skip to main content
Log in

Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part III. Electrical properties

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper, the third and final of a three part series, presents the electrical properties of postdeposition annealed, lead lanthanum titanate (PLT) thin films deposited by multi-ion-beam reactive sputtering (MIBERS). Also, a model is presented that explains the relations among composition, crystallographic structure, microstructure, and electrical properties of the PLT thin films. Thin films of PLT consisting of the perovskite phase exhibit (100) textured microstructures. Addition of a critical quantity of excess PbO results in the loss of this (100) texture, and continuity of the perovskite phase is disrupted while both excess PbO and porosity phases become continuous due to a percolation effect. Films with textured microstructures consisting of a continuous perovskite phase exhibit relatively high dc resistivities, high dielectric permittivities, and high remanent polarizations. At the transition between textured and nontextured microstructures, a discontinuous drop in the electrical properties occurs due to the ensuing continuity of the excess PbO and porosity. These composition-induced changes in the electrical properties were quantitatively modeled by applying a simple mixing rule model to the microstructure model developed in Part II of this series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaca, NY, 1960).

    Google Scholar 

  2. S. C. Abrahams, S. K. Kurtz, and P. B. Jamieson, Phys. Rev. 172 (2), 551 (1968).

    Article  CAS  Google Scholar 

  3. F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon Press Inc., New York, 1962), pp. 160–171.

    Google Scholar 

  4. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, Inc., New York, 1976), pp. 516–580.

    Google Scholar 

  5. G.R. Fox, S.B. Krupanidhi, K.L. More, and L.F. Allard, J. Mater. Res. 7, 3039 (1992).

    Article  CAS  Google Scholar 

  6. G. R. Fox, S. B. Krupanidhi, and K. L. More, J. Mater. Res. 8, 2191 (1993).

    Article  CAS  Google Scholar 

  7. W. A. Geideman, IEEE Trans. Ultrason. Ferroelec. Freq. Control 38 (6), 704 (1991).

    Article  CAS  Google Scholar 

  8. L. H. Parker and A. F. Tasch, IEEE Circ. Dev. Mag. 6, 17 (1990).

    Article  Google Scholar 

  9. H. Adachi, T. Mitsuyu, O. Yamazaki, and K. Wasa, Jpn. J. Appl. Phys., Supplement 24–2 24, 287 (1985).

    Article  CAS  Google Scholar 

  10. R. Takayama, Y. Tomita, K. Iijima, and I. Ueda, J. Appl. Phys. 61 (1), 411 (1987).

    Article  CAS  Google Scholar 

  11. C.E. Land, J. Am. Ceram. Soc. 72 (11), 2059 (1989).

    Article  CAS  Google Scholar 

  12. D. Hennings and K. H. Härdtl, Phys. Status Solidi A 3, 465 (1970).

    Article  CAS  Google Scholar 

  13. D. Hennings and G. Rosenstein, Mater. Res. Bull. VII, 1505 (1972).

    Article  Google Scholar 

  14. T. Yamamoto, H. Igarashi, and K. Okazaki, J. Am. Ceram. Soc. 66 (5), 363 (1983).

    Article  CAS  Google Scholar 

  15. K. Keizer and A.J. Burggraaf, Ferroelectrics 14, 671 (1976).

    Article  CAS  Google Scholar 

  16. L. K. H. van Beek, in Progress in Dielectrics, edited by J. B. Birks (Heywood Books, London, England, 1967), Vol. 7, pp. 69–114.

    Google Scholar 

  17. Mercury Probe, Model Hg-102RD, MSI Electronics, Inc., Woodside, NY.

  18. Programmable Electrometer, Model 617, Keithley, Cleveland, OH.

  19. Computer, Model 9121, Hewlett Packard.

  20. Impedance Analyzer 5 Hz–13 MHz, Model 4192A, Hewlett Packard.

  21. A. R. Von Hippel, Dielectrics and Waves (John Wiley & Sons, Inc., New York, 1954), pp. 86–91.

    Google Scholar 

  22. Pulse Generator, Model 24B, Hewlett Packard.

  23. Tektronix Digital Oscilloscope, Model 2430A, Tektronix Inc., Beaverton, OR.

  24. V. M. Gurevich, Electric Conductivity of Ferroelectrics (U.S. Department of Commerce, National Technical Service Information Service, Springfield, VA, 1971), pp. 1–29.

    Google Scholar 

  25. H. E. Brown, Lead Oxide-Properties and Applications (International Lead Zinc Research Organization, Inc., New York, 1985), pp. 153–193.

    Google Scholar 

  26. R. C. Weast, CRC Handbook of Chemistry and Physics, 64th ed. (CRC Press, Inc., Boca Raton, FL, 1983), p. E-76.

    Google Scholar 

  27. H. K. Henisch, Semiconductor Contacts (Clarendon Press, Oxford, 1984).

    Google Scholar 

  28. G. R. Fox and S. B. Krupanidhi, J. Appl. Phys. 74 (3), (1993).

    Article  Google Scholar 

  29. G. R. Fox, Composition/Structure/Property Relations of Ferroelectric Lead-Lanthanum-Titanate Thin Films Deposited by Multi-Ion-Beam Reactive Sputtering, Ph.D. Thesis, The Pennsylvania State University (1992).

  30. G. R. Fox, E. Breval, and R. E. Newnham, J. Mater. Sci. 26, 2566 (1991).

    Article  CAS  Google Scholar 

  31. O. Yamaguchi, A. Narai, and T. Komatsu, J. Am. Ceram. Soc. 69 (10), C-256 (1986).

    Article  CAS  Google Scholar 

  32. K. Ishikawa, K. Yoshikawa, and N. Okada, Phys. Rev. B 37 (10), 5852 (1988).

    Article  CAS  Google Scholar 

  33. D. S. McLachlan, M. Blaszkiewics, and R. E. Newnham, J. Am. Ceram. Soc. 73 (8), 2187 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, G.R., Krupanidhi, S.B. Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part III. Electrical properties. Journal of Materials Research 8, 2203–2215 (1993). https://doi.org/10.1557/JMR.1993.2203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.2203

Navigation