Skip to main content
Log in

Evidence for nonclassical nucleation at solid surfaces in diamond deposition from the gas phase

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the framework of a previously developed kinetic model, a discriminating criterion is established to distinguish between classical and nonclassical nucleation of diamond at solid surfaces. The two-step model gives the non-steady-state nucleation density function in terms of the rate constants for active site → germ, germ → active site, and germ → nucleus kinetic steps. The criterion states that α/β > 6 is a necessary condition for classical nucleation at surfaces to occur, α and β being functions of the rate constants which can be obtained by appropriate analysis of the experimental data. This criterion is applied to recent results on diamond nucleation at silicon surfaces and indicates nonclassical results The expression of the nonequilibrium Zeldovich factor, Z, is also found in the form Z = [1 + K/nd]−1, K and nd being the rate constants for the germ → nucleus and germ → active site steps, respectively. An estimation of the rate constants is reported and the corresponding Zeldovich factor is evaluated to be 0.6 for nucleation at both Si(100) and Si(111) substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Venables and G. L. Price, in Epitaxial Growth, edited by J. W. Matthews (Academic Press, New York, 1975), Pt. B, Chap. 4.

    Google Scholar 

  2. M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926).

    CAS  Google Scholar 

  3. J. P. Hirth and G. P. Pound, in Progress in Materials Science, edited by B. Chalmers (Macmillan, New York, 1963). Vol. 11.

    Google Scholar 

  4. Crystal Growth: an Introduction, edited by P. Hartmann (North-Holland, Amsterdam, 1973).

  5. H. Molinari, R. Polini, M. L. Terranova, P. Ascarelli, and S. Fontana, J. Mater. Res. 7, 1778 (1992).

    Article  CAS  Google Scholar 

  6. A. Milchev, Contemporary Phys. 32, 321 (1991).

    Article  CAS  Google Scholar 

  7. K. F. Kelton, A. L. Greer, and C. V. Thompson. J. Chem. Phys. 79, 6261 (1983).

    Article  CAS  Google Scholar 

  8. J. Frenkel, in Kinetic Theory of Liquids (Dover, NY, 1955).

    Google Scholar 

  9. M. Tomellini, R. Polini, and V. Sessa, J. Appl. Phys. 70, 7573 (1991).

    Article  CAS  Google Scholar 

  10. M. Tomellini. J. Appl. Phys. 72, 1589 (1992).

    Article  CAS  Google Scholar 

  11. J. Frenkel. J. Chem. Phys. 7, 538 (1939).

    Article  CAS  Google Scholar 

  12. R. Becker and W. Döring, Ann. Phys. 24, 719 (1935).

    Article  CAS  Google Scholar 

  13. R. Kaischcw, Z. Elektrochem. 61, 35 (1957).

    Google Scholar 

  14. D. Turnbull and J.C. Fisher, J. Chem. Phys. 17, 71 (1949).

    Article  CAS  Google Scholar 

  15. J. Zeldovich, J. Exp. Theor. Phys. (Russ.) 12, 525 (1942).

    CAS  Google Scholar 

  16. M.C. Weinberg and E. D. Zanotto. J. Non-Cryst. Solids 108, 99 (1989).

    Article  CAS  Google Scholar 

  17. E. Molinari. R. Polini, V. Sessa, M. L. Terranova, and M. Tomellini, J. Mater. Res. 8, 785 (1993).

    Article  Google Scholar 

  18. E.G. Celii and J.E. Butler, Annu. Rev. Phys. Chem. 42, 643 (1991).

    Article  CAS  Google Scholar 

  19. E. Molinari, R. Polini, and M. Tomellini, Appl. Phys. Lett. 61, 1287 (1992).

    Article  CAS  Google Scholar 

  20. E. Molinari, R. Polini. and M. Tomellini, J. Mater. Res. 8, 798 (1993).

    Article  CAS  Google Scholar 

  21. R. Polini and M. Tomellini, Diamond and Related Materials (1993, in press).

  22. D. Kashchiev, Surf. Sci. 18, 389 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomellini, M. Evidence for nonclassical nucleation at solid surfaces in diamond deposition from the gas phase. Journal of Materials Research 8, 1596–1604 (1993). https://doi.org/10.1557/JMR.1993.1596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.1596

Navigation