Skip to main content
Log in

Investigation of cured hydridopolysilazane-derived ceramic fibers via dynamic nuclear polarization

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

During the pyrolysis of cured hydridopolysilazane (HPZ) polymer to form Si–C–N ceramic fibers, large quantities of unpaired electrons are produced. For such materials dynamic nuclear polarization (DNP) provides a means of enhancing the intensity of the NMR signal, and supplies information on the localization or delocalization of unpaired electrons. 29Si, 1H, and 13C DNP gives enhancements of 250 for 13C and at least 800 for 29Si. 13C and 29Si DNP-DPMAS experiments yield the following results: (i) there are at least two distinct types of carbon, sp2 and sp3; (ii) there is a distribution of sp3 silicon environments; (iii) the unpaired electrons behave as fixed paramagnetic centers; and (iv) the unpaired electrons are distributed homogeneously throughout the sample. Proton DNP spectra can be obtained even though hydrogen is only a trace element in the finished ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Legrow, T. F. Lim, J. Lipowitz, and R. S. Reaoch, Ceram. Bull. 66 (2), 363 (1987).

    CAS  Google Scholar 

  2. J. Lipowitz and G. L. Turner, Polym. Prepr. 29 (1), 74 (1988).

    CAS  Google Scholar 

  3. K. J. Wynne and R. W. Rice, Ann. Rev. Mater. Sci. 14, 297 (1984).

    Article  CAS  Google Scholar 

  4. R. W. Rice, Am. Ceram. Soc. Bull. 62 (8), 889 (1983).

    CAS  Google Scholar 

  5. M. J. Maunder, Practical Hints on Infra-red Spectrometry (Adam Hilger Ltd., London, 1971).

  6. G. R. Hatfield and K. R. Carduner, J. Mater. Sci. 24, 4209 (1989).

    Article  CAS  Google Scholar 

  7. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, London, 1961), Chap. 6.

  8. E. R. Andrew, Prog. NMR Spectrosc. 8, 1 (1971).

    Article  CAS  Google Scholar 

  9. A. Pines, W. G. Gibby, and J. S. Waugh, J. Chem. Phys. 59, 569 (1973).

    Article  CAS  Google Scholar 

  10. A. G. Overhauser, Phys. Rev. 92, 411 (1953).

    Article  CAS  Google Scholar 

  11. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, London, 1961), Chap. 9.

  12. R. A. Wind, M. J. Duijvestijn, C. van der Lugt, A. Manenschijn, and J. Vriend, Prog. NMR Spectrosc. 17, 33 (1985).

    Article  CAS  Google Scholar 

  13. C. P. Poole, Electron Spin Resonance (John Wiley & Sons, New York, 1983), Chap. 11.

  14. G. E. Maciel and M. F. Davis, J. Magn. Reson. 64, 356 (1985).

    CAS  Google Scholar 

  15. R. A. Wind, F. E. Anthonio, M. J. Duijvestijn, J. Smidt, J. Trommel, and G. M. C. de Vette, J. Magn. Reson. 52, 424 (1983).

    CAS  Google Scholar 

  16. E. L. Hahn, Phys. Rev. 80, 580 (1950).

    Article  Google Scholar 

  17. C. A. Wilkie, T. C. Ehlert, and D. T. Haworth, J. Inorg. Nucl. Chem. 40, 1983 (1978).

    Article  CAS  Google Scholar 

  18. H. L. Retcofsky and R. A. Friedel, J. Phys. Chem. 77 (1), 68 (1973).

    Article  CAS  Google Scholar 

  19. J. R. Guth and W. T. Petuskey, J. Phys. Chem. 91, 5361 (1987).

    Article  CAS  Google Scholar 

  20. J. S. Hartman, M.F. Richardson, B. L. Sherriff, and B. G. Winsborrow, J. Am. Chem. Soc. 109, 6059 (1987).

    Article  CAS  Google Scholar 

  21. M. Zhang and G. E. Maciel, J. Anal. Chem. 62, 633 (1990).

    Article  CAS  Google Scholar 

  22. J. G. Powles and J. H. Strange, Proc. Phys. Soc. London 82, 6-15 (1963).

  23. G. E. Maciel, C. E. Bronnimann, and B. L. Hawkins, Adv. Magn. Reson. 14, 125 (1990).

    Article  Google Scholar 

  24. D. P. Burum and W. K. Rhim, J. Chem. Phys. 70 (7), 3553 (1979).

    Article  CAS  Google Scholar 

  25. A. Naito, S. Ganapathy, and C. A. McDowell, J. Chem. Phys. 74 (10), 5393 (1981).

    Article  CAS  Google Scholar 

  26. R. A. Wind, M. J. Duijvestijn, C. van der Lugt, J. Smidt, and J. Vriend, Magnetic Resonance. Introduction, Advanced Topics and Applications to Fossil Energy, edited by L. Petrakis and J. P. Fraissard (D. Reidel, Dordrecht, 1984).

  27. I. J. Lowe and D. Tse, Phys. Rev. 166 (2), 279 (1968).

    Article  CAS  Google Scholar 

  28. H. E. Rorschach, Jr., Physica 30, 38 (1964).

    Article  CAS  Google Scholar 

  29. I. J. Lowe and S. Gade, Phys. Rev. 156, 817 (1967).

    Article  CAS  Google Scholar 

  30. C. E. Bronnimann, R. C. Zeigler, and G. E. Maciel, J. Am. Chem. Soc. 110, 2023 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, R.H., Wind, R.A. & Maciel, G.E. Investigation of cured hydridopolysilazane-derived ceramic fibers via dynamic nuclear polarization. Journal of Materials Research 8, 649–654 (1993). https://doi.org/10.1557/JMR.1993.0649

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.0649

Navigation