Skip to main content
Log in

The effect of porosity development on the removal of organic vehicle from ceramic or metal moldings

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An experimentally verified model, which quantifies the degradation and diffusion of organic vehicle during pyrolysis of a ceramic molding in the shape of an infinite cylinder, has been modified to accommodate the various effects of porosity development as degradation proceeds. Thus, in the first case, a shrinking radius has been taken into account as organic matter recedes. Secondly, the formation of uniformly distributed porosity is considered as organic vehicle is removed. In each of these instances, the model predicts the critical heating rate and temperature at which boiling occurs in the ceramic body, giving rise to internal defects for various cylinder radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Edirisinghe and J. R. G. Evans, Int. J. High Technol. Ceram. 2, 1 (1986).

    Article  CAS  Google Scholar 

  2. Idem, ibid. 2, 249 (1986).

  3. R. M. German, K. F. Hens, and S. T. Paul Lin, Bull. Am. Ceram. Soc. 70, 1294 (1991).

    CAS  Google Scholar 

  4. J. R. G. Evans, in New Materials and Their Applications, edited by D. Holland (Institute of Physics, U. K., 1990), pp. 25–32.

  5. J. G. Zhang, M. J. Edirisinghe, and J. R. G. Evans, Industrial Ceram. 9, 72 (1989).

    CAS  Google Scholar 

  6. J. Woodthorpe, M. J. Edirisinghe, and J. R. G. Evans, J. Mater. Sci. 24, 1038 (1989).

    Article  CAS  Google Scholar 

  7. J. K. Wright, J. R. G. Evans, and M. J. Edirisinghe, J. Am. Ceram. Soc. 72, 1822 (1989).

    Article  CAS  Google Scholar 

  8. R. M. German, Int. J. Powder Metall. 23, 237 (1987).

    CAS  Google Scholar 

  9. P. Calvert and M. Cima, J. Am. Ceram. Soc. 73, 575 (1990).

    Article  CAS  Google Scholar 

  10. M. R. Baron and J. C. Ulicny, ibid. 73, 3323 (1990).

    Google Scholar 

  11. G. C. Stangle and I. A. Aksay, Chem. Eng. Sci. 45, 1719 (1990).

    Article  CAS  Google Scholar 

  12. J. R. G. Evans, M. J. Edirisinghe, J. K. Wright, and J. Crank, Proc. Soc. London A 432, 321 (1991).

    Article  CAS  Google Scholar 

  13. T. Zhang, J. R. G. Evans, and K. K. Dutta, J. Euro. Ceram. Soc. 5, 303 (1989).

    Article  CAS  Google Scholar 

  14. H. Shaw, T. J. Hutton, and M. J. Edirisinghe, J. Mater. Sci. Lett. 11, 1075 (1992).

    Article  CAS  Google Scholar 

  15. J. Crank and P. Nicolson, Proc. Cambridge Philos. Soc. Math. Phys. Sci. 43, 50 (1947).

    Article  Google Scholar 

  16. J. L. Duda, J. S. Vrentas, S. T. Ju, and H. T. Liu, AIChEJ 28, 279 (1982).

    Article  CAS  Google Scholar 

  17. J. D. Ferry, Viscoelastic Properties of Polymers (John Wiley, New York, 1970), p. 316.

  18. P. J. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, Ithica, NY, 1953), pp. 495–540.

  19. R. M. Barrer, in Diffusion in Polymers, edited by J. Crank and G. S. Park (Academic Press, London, 1968), pp. 165–217.

  20. M. D. Mikhailov, M. N. Özisik, and B.K. Shishedjiev, J. Heat Transfer 104, 781 (1987).

    Article  Google Scholar 

  21. E. H. Kerner, Proc. Phys. Soc. B69, 802 (1956).

    Article  Google Scholar 

  22. A. D. Brailsford and K. G. Major, Brit. J. Appl. Phys. 15, 313 (1964).

    Article  Google Scholar 

  23. M. J. Cima, J. A. Lewis, and A. D. Devoe, J. Am. Ceram. Soc. 72, 1192 (1989).

    Article  CAS  Google Scholar 

  24. E. H. Twizell, Computational Methods for Partial Differential Equations (Ellis Horwood, Chichester, U. K., and John Wiley & Sons, New York, 1984).

  25. J. L. Duda, Pennsylvania State Univ., private communications.

  26. J. L. Duda, Y. C. Ni, and J. S. Vrentas, J. Appl. Polym. Sci. 22, 689 (1978).

    Article  CAS  Google Scholar 

  27. H. Endo, T. Fujimoto, and M. J. Nagasawa, Polym. Sci. 7, 1669 (1969).

    CAS  Google Scholar 

  28. K. E. Coulter and H. Kehde, Encyclopedia of Polymer Science and Technology, edited by H. F. Mark and N. G. Gaylord (Interscience, New York, 1970), p. 152.

  29. S. G. Canagaratne, D. Margerison, and J. P. Newport, Trans. Faraday Soc. 62, 3058 (1966).

    Article  Google Scholar 

  30. D. A. G. Bruggeman, Annln. Phys. 24, 636 (1935).

    Article  CAS  Google Scholar 

  31. R. E. Wiech, U. S. Patent 4305 756 (1981).

  32. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959), p. 200.

  33. J. K. Wright, M. J. Edirisinghe, J. G. Zhang, and J. R. G. Evans, J. Am. Ceram. Soc. 73, 2653 (1990).

    Article  CAS  Google Scholar 

  34. H. Shaw and M. J. Edirisinghe, Proc. 2nd European Ceram. Soc. Conf., Augsburg, Germany, September 1991 (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matar, S.A., Evans, J.R.G., Edirisinghe, M.J. et al. The effect of porosity development on the removal of organic vehicle from ceramic or metal moldings. Journal of Materials Research 8, 617–625 (1993). https://doi.org/10.1557/JMR.1993.0617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.0617

Navigation