Skip to main content
Log in

Raman scattering and electrical conductivity in highly disordered activated carbon fibers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Because of their unusually large specific surface area (SSA), Activated Carbon Fibers (ACF’s) have a huge density of micropores and defects. The Raman scattering technique and low-temperature dc electrical conductivity measurements were used as characterization tools to study the disorder in ACF’s with SSA ranging from 1000 m2/g to 3000 m2/g. Two peaks were observed in every Raman spectrum for ACF’s and they could be identified with the disorder-induced peak near ∼1360 cm−1 and the Breit–Wigner–Fano peak near ∼1610 cm−1 associated with the Raman-active E2g2 mode of graphite. The graphitic nature of the ACF’s is shown by the presence of a well-defined graphitic structure with La values of 20–30 Å. We observed that the Raman scattering showed more sensitivity to the precursor materials than to the SSA of the ACF’s. From 4 K to room temperature, the dc electrical resistivity in ACF’s is observed to follow the exp [(T0/T)1/2] functional form and it can be accounted for by a charge-energy-limited tunneling conduction mechanism. Coulomb-gap conduction and n-dimensional (n ≤ 3) variable-range hopping conduction models were also considered but they were found to give unphysical values for their parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nishino, Tanso (Carbon Society of Japan) 132, 57 (1988).

    CAS  Google Scholar 

  2. K. Kaneko and N. Shindo, Carbon 27, 815 (1989).

    Article  CAS  Google Scholar 

  3. E. Tanaka, Fuel and Combustion 54, 241 (1987).

    Google Scholar 

  4. M. Smíšek and S. Černý, Active Carbon: Manufacture, Properties and Applications (American Elsevier Publishing Company, New York, 1967).

  5. D. D. Saperstein, J. Phys. Chem. 90, 3883 (1986).

    Article  CAS  Google Scholar 

  6. R. Mcintosh, R. S. Haines, and G. C. Benson, J. Chem. Phys. 15, 17 (1947).

    Article  CAS  Google Scholar 

  7. W. W. Smeltzer and R. Mcintosh, Can. J. Chem. 31, 1239 (1953).

    Article  CAS  Google Scholar 

  8. S. L. di Vittorio, M. S. Dresselhaus, M. Endo, J. P. Issi, L. Piraux, and V. Bayot, J. Mater. Res. 6, 778 (1991).

    Article  Google Scholar 

  9. K. Kuriyama and M. S. Dresselhaus, J. Mater. Res. 6, 1040 (1991).

    Article  CAS  Google Scholar 

  10. B. S. Elman, M. S. Dresselhaus, G. Dresselhaus, E. W. Maby, and H. Mazurek, Phys. Rev. B 24, 1027 (1981).

    Article  CAS  Google Scholar 

  11. M.S. Dresselhaus and G. Dresselhaus, in Light Scattering in Solids III, Topics in Applied Physics, edited by M. Cardona and G. Giintherodt (Springer, Berlin, Heidelberg, 1982), Vol. 51, p. 3.

  12. T. C. Chieu, M. S. Dresselhaus, and M. Endo, Phys. Rev. B 26, 5867 (1982).

    Article  CAS  Google Scholar 

  13. J. R. Dacey, D. F. Quinn, and J. T. Gallagher, Carbon 4, 73 (1966).

    Article  CAS  Google Scholar 

  14. F. Carmona, P. Delhaès, G. Keryer, and J. P. Manceau, Solid State Commun. 14, 1183 (1974).

    Article  CAS  Google Scholar 

  15. T. Hanawa and J. Kakinoki, Carbon 1, 403 (1964).

    Article  Google Scholar 

  16. J. Heremans, Carbon 23, 431 (1985).

    Article  CAS  Google Scholar 

  17. P. Delhaès and F. Carmona, in Chemistry and Physics of Carbon, edited by P. L. Walker, Jr. and P. A. Thrower (Marcel Dekker, Inc., New York, 1981), Vol. 17, p. 89.

  18. Dennis F. Baker and Robert H. Bragg, Phys. Rev. B 28, 2219 (1983).

    Article  CAS  Google Scholar 

  19. N. F. Mott, Conduction in Non-Crystalline Materials (Oxford University Press, New York, 1987).

  20. R. M. Hill, Phys. Status Solidi A35, K29 (1976).

  21. A. G. Zabrodskii, Sov. Phys.-Semicond. 11, 345 (1977).

    Google Scholar 

  22. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University Press, New York, 1988).

  23. A. W. P. Fung, Characterization of Activated Carbon Fibers, Master’s Thesis, Department of Electrical Engineering and Computer Science, MIT, 1991.

  24. D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  25. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg, Graphite Fibers and Filaments (Springer, Berlin, Heidelberg, 1988).

  26. C. T. Chan, K. M. Ho, and W. A. Kamitak hara, Phys. Rev. B 36, 3499 (1987).

    Article  CAS  Google Scholar 

  27. M. Endo (unpublished).

  28. A. L. Efros and B. I. Shklovskii, J. Phys. C8, L49 (1975).

  29. A. G. Zabrodskii, Sov. Phys.-Semicond. 14, 781 (1980).

    Google Scholar 

  30. B. Abeles, P. Sheng, M. D. Courts, and Y. Arie, Adv. Phys. 24, 407 (1975).

    Article  CAS  Google Scholar 

  31. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, Heidelberg, 1984).

  32. S. L. di Vittorio, M. S. Dresselhaus, T. Enoki, M. Endo, and T. Nakajima, Phys. Rev. (1992), in preparation.

  33. B. T. Kelly, Physics of Graphite (Applied Science, London, 1981).

  34. C. J. Adkins, in Hopping and Related Phenomena, edited by H. Fritzsche and M. Pollak (World Scientific Publishing Company, Singapore, 1990), p. 93.

  35. B. I. Shklovskii, Sov. Phys.-Semicond. 6, 1964 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fung, A.W.P., Rao, A.M., Kuriyama, K. et al. Raman scattering and electrical conductivity in highly disordered activated carbon fibers. Journal of Materials Research 8, 489–500 (1993). https://doi.org/10.1557/JMR.1993.0489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.0489

Navigation