Skip to main content
Log in

The amorphization of complex silicates by ion-beam irradiation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Twenty-five silicates were irradiated at ambient temperature conditions with 1.5 MeV Kr+. Critical doses of amorphization were monitored in situ with transmission electron microscopy. The doses required for amorphization are compared with the structures, bond-types, compositions, and physical properties of the silicates using simple correlation methods and more complex multivariate statistical analysis. These analyses were made in order to determine which properties most affect the critical amorphization dose. Simple two-variable correlations indicate that melting point, efficiency of atomic packing, the dimensionality of SiO4 polymerization (DOSP), and bond ionicity have a relationship with critical amorphization dose. However, these relationships are evident only in selected portions of the data set; that is, for silicate phases with a common structure type. A clearer relationship between the silicate properties and critical amorphization dose was determined for the entire data set with multiple linear regression. Several regression models are proposed which describe the variation in amorphization dose. All regression models contain the following properties: (i) melting point; (ii) a structural variable (DOSP, elastic modulus, and/or atomic packing); and (iii) the proportion of Si–O bonding (instead of bond ionicity). The regression models are equivalent, because they represent combinations of similar properties. Notably, density and atomic mass are not controlling properties for the critical amorphization dose. Melting and amorphization by ion irradiation are apparently related processes. Neither melting point nor critical amorphization dose can be predicted by considering only the structure, composition, or bonding of a particular phase. The Si–O bond is the most covalent bond in silicates, and is the “weak link” in the structure with respect to amorphization. Thus, DOSP is also an important property, as the topology of these ”weak links” influences a structure’s ability to accumulate amorphous regions. The efficiency of atomic packing is related to the process of defect self-recombination during amorphization. The bulk modulus and shear modulus are important variables within the regression models because of their direct relationship to atomic packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ion Beam Modification of Insulators, Beam Modification of Materials, edited by P. Mazzoldi and G. W. Arnold (Elsevier Science Pub., Amsterdam, 1987), p. 2.

  2. F. W. Clinard and L.W. Hobbs, in Physics of Radiation Effects in Crystals, edited by R.A. Johnson and A.N. Orlov (Elsevier Science Pub., Amsterdam, 1986), p. 387.

  3. L. M. Wang and R. C. Ewing, Mater. Res. Soc. Bull. XVII/5, 38 (1992).

    Article  Google Scholar 

  4. R. C. Ewing, B. C. Chakoumakos, G. R. Lumpkin, and T. Murakami, Mater. Res. Soc. Bull. XII/4, 58 (1987).

    Article  Google Scholar 

  5. R.J. Hemley, A. P. Jephcoat, H.K. Mao, L. C. Ming, and M.H. Manghnani, Nature 334, 52 (1988).

    Article  CAS  Google Scholar 

  6. H. Sankaran, S. K. Sikka, S. M. Sharma, and R. Chidambram, Phys. Rev. B 38, 170 (1988).

    Article  CAS  Google Scholar 

  7. M. B. Kruger and R. Jeanloz, Science 249, 647 (1990).

    Article  CAS  Google Scholar 

  8. R.C. Ewing and W. Lutze, Ceram. Int. 17, 287 (1991).

    Article  CAS  Google Scholar 

  9. D.V. Stevanovic, D.A. Thompson, and E. R. Vance, J. Nucl. Mater. 161, 169 (1989).

    Article  Google Scholar 

  10. W.J. Weber, L.K. Mansur, F.W. Clinard, Jr., and D.M. Parkin, J. Nucl. Mater. 184, 1 (1991).

    Article  CAS  Google Scholar 

  11. M. H. Auvray-Gély, A. Dunlop, and L. W. Hobbs, J. Nucl. Mater. 133/134, 230 (1985).

    Article  Google Scholar 

  12. T. Murakami, B.C. Chakoumakos, R.C. Ewing, G.R. Lumpkin, and W.J. Weber, Am. Miner. 76, 1510 (1991).

    CAS  Google Scholar 

  13. K. James and S.A. Durrani, Nucl. Tracks 12, 921 (1986).

    Article  CAS  Google Scholar 

  14. K. Shiraishi, J. Nucl. Mater. 169, 305 (1989).

    Article  CAS  Google Scholar 

  15. G J. Clark, A. D. Marwick, F. LeGoues, R. B. Laibowitz, R. Koch, and P. Madakson, Nucl. Instrum. Methods Phys. Res. B 32, 405 (1988).

    Article  Google Scholar 

  16. C. W. White, C. J. McHargue, P. S. Sklad, L. A. Boatner, and G. C. Farlow, Mater. Sci. Rep. 4, 41 (1989).

    Article  CAS  Google Scholar 

  17. W. J. Pythian, J. Nucl. Mater. 159, 219 (1988).

    Article  Google Scholar 

  18. D.M. Follstaedt, Nucl. Instrum. Methods Phys. Res. B 7/8, 11 (1985).

  19. T. Lechtenberg, J. Nucl. Mater. 133/134, 149 (1985).

    Article  Google Scholar 

  20. P. R. Okamoto and M. Meshii in Science of Advanced Materials, edited by H. Weidersich and M. Meshii (ASM INTERNATIONAL, Metals Park, OH, 1988), p. 33.

  21. W.L. Johnson, Mater. Sci. Eng. 97, 1 (1988).

    Article  CAS  Google Scholar 

  22. J. L. Brimhall, H. E. Kissinger, and L. A. Chariot, Radiat. Eff. 77, 237 (1983).

    Article  Google Scholar 

  23. D. G. Howitt, H. W. Chan, E. R. Vance, J. F. DeNatale, P. J. Hood, and D.A. Thompson, Radiat. Eff. Def. Solids 112, 39 (1990).

    Article  CAS  Google Scholar 

  24. L. Cartz, F. G. Karioris, and R. A. Fournelle, Radiat. Eff. 54, 57 (1981).

    Article  CAS  Google Scholar 

  25. L.M. Wang, R.K. Eby, J. Janeczek, and R.C. Ewing, Nucl. Instrum. Methods Phys. Res. B 59/60, 395 (1991).

    Article  Google Scholar 

  26. A. Perez and P. Thevenard, in Ion Beam Modification of Insulators, Beam Modification of Materials, 2, edited by P. Mazzoldi and G. W. Arnold (Elsevier Sci. Pub., Amsterdam, 1987), p. 156.

  27. D.A. Thompson, Radiat. Eff. 56, 105 (1981).

    Article  CAS  Google Scholar 

  28. R.L. Fleischer, Radiat. Eff. 28, 113 (1976).

    Article  CAS  Google Scholar 

  29. M. Toulemonde, E. Balanzat, S. Bouffard, and J. C. Jousset, Nucl. Instrum. Methods Phys. Res. B 39, 1 (1989).

    Article  Google Scholar 

  30. L. M. Wang, M. L. Miller, and R. C. Ewing, in Elec. Microsc. Soc. Am. Proc. 49, edited by G. W. Bailey (San Francisco Press, San Francisco, CA, 1991), p. 910.

  31. W.J. Weber, R.K. Eby, and R.C. Ewing, J. Mater. Res. 6, 1334 (1991).

    Article  CAS  Google Scholar 

  32. M.J. Weber, J. Mater. Res. 5, 2687 (1990).

    Article  CAS  Google Scholar 

  33. L. M. Wang and R. C. Ewing, Nucl. Instrum. Methods Phys. Res. B (1992, in press).

  34. K.S. Jones and C.J. Santana, J. Mater. Res. 6, 1048 (1991).

    Article  CAS  Google Scholar 

  35. R. K. Eby, The Amorphization of Silicates by Ion-Beam Irradiation, Ph.D. Dissertation (microfiche, University of New Mexico, Albuquerque, NM 87131, 1992), 166 pages.

  36. C. W. Allen, L. L. Funk, E. A. Ryan, and A. Taylor, Nucl. Instrum. Methods Phys. Res. B 40/41, 553 (1989).

    Article  Google Scholar 

  37. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

  38. F. Liebau, Structural Chemistry of Silicates: Structure, Bonding, Classification (Springer-Verlag, Germany, 1985).

  39. J.J. Papike, Rev. Geophys. 26, 407 (1988).

    Article  Google Scholar 

  40. J.J. Papike, Rev. Geophys. 25, 1483 (1987).

    Article  CAS  Google Scholar 

  41. L. M. Wang and R. C. Ewing, in Phase Formation and Modification by Beam-Solid Interactions, edited by G. S. Was, L. E. Rehn, and D.M. Follstaedt (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992) (in press).

  42. B. C. Chakoumakos, T. Murakami, G. R. Lumpkin, and R. C. Ewing, Science 236, 1493 (1987).

    Article  Google Scholar 

  43. E.G. Proshchenko, M. Polezhaev, and E. B. Khalezova, Mineral Zhurkh. 9, 41 (1987).

    CAS  Google Scholar 

  44. F.C. Hawthorne et al, Am. Miner. 76, 370 (1991).

    CAS  Google Scholar 

  45. W. A. Deer, R. A. Howie, and J. Zussman, An Introduction to Rock-Forming Minerals, 12th ed. (John Wiley & Sons, Inc., Great Britain, 1980).

  46. K. Fischer, Zeit. fur Krist. 129, 222 (1969).

    Article  CAS  Google Scholar 

  47. M. Ritsuro, N. Izumi, and N. Kozo, Am. Miner. 69, 948 (1984).

    Google Scholar 

  48. J. Janeczek and R. K. Eby, Am. Geophys. Union Fall Mtg. Prog. Abstr., EOS suppl. Oct. 29, 554 (1991).

    Google Scholar 

  49. M. R. Pascucci, J. L. Hutchinson, and L. W. Hobbs, Radiat. Eff. 74, 219 (1983).

    Article  CAS  Google Scholar 

  50. R. G. Macaulay-Newcombe, D.A. Thompson, J. A. Davies, and D. V. Stevanovic, Nucl. Instrum. Methods Phys. Res. B 46, 180 (1990).

    Article  Google Scholar 

  51. H. M. Naguib and R. Kelly, Radiat. Eff. 25, 1 (1975).

    Article  CAS  Google Scholar 

  52. S. S. Batsanov, Russ. Chem. Rev. 37, 332 (1968).

    Article  Google Scholar 

  53. H. Matzke, Can. J. Phys. 46, 621 (1968).

    Article  CAS  Google Scholar 

  54. L. W. Hobbs, Ultramicroscopy 23, 339 (1987).

    Article  CAS  Google Scholar 

  55. R.D. Shannon, Acta Cryst. A32, 751 (1976).

    Article  CAS  Google Scholar 

  56. J. Koike, P.R. Okamoto, L.E. Rehn, and M. Meshii, Metall. Trans. A21, 1799 (1990).

    Google Scholar 

  57. R. Bhadra, J. Pearson, P.R. Okamoto, L.E. Rehn, and M. Grimsditch, Phys. Rev. B 38, 12656 (1988).

    Article  Google Scholar 

  58. R. S. Carmichael, in CRC Handbook of Physical Properties of Rocks (CRC Press, Boca Raton, FL, 1982), Vol. 2/3.

  59. F. Birsch, in Handbook of Physical Constants, edited by Sydney P. Clark, Jr. (GSA Memoir 97, GSA, Inc., 1966), p. 97.

  60. R. A. Robie, B. S. Hemingway, and J. R. Fisher, USGS Bull. 1452, 456 pp. (1978).

  61. D.V. Morgan and D.V. Vliet, Contemp. Phys. 11, 173 (1970).

    Article  CAS  Google Scholar 

  62. R. H. Myers, Classical and Modern Regression with Applications (PWS Publishers, USA, 1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eby, R.K., Ewing, R.C. & Birtcher, R.C. The amorphization of complex silicates by ion-beam irradiation. Journal of Materials Research 7, 3080–3102 (1992). https://doi.org/10.1557/JMR.1992.3080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.3080

Navigation