Skip to main content
Log in

Particle size effects on colloidal processing of oxide powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Rheological behavior, properties of colloidal solids consolidated by filtration, and their structure change during drying were studied with aqueous suspensions of a mullite powder of nanometer size and two kinds of alumina powders of submicrometer sizes. The rheological properties of non-Newtonian flow suspensions were analyzed by a power law equation of S = K γn, where S is the shear stress, γ the shear rate, and K and n (O ⋚ n ⋚ 1) constants. The critical solids content (Vc) at n = O (indicating colloidal solids) depended greatly on the zeta potential of particles in suspensions, and dominated the densities of dried green compacts (Vg) of submicrometer sized powders. In a nanometer sized powder, the densities of dried green compacts were dependent on both Vc value and the solid contents of suspensions. Phase diagrams of one-component colloidal systems were constructed by plotting the Vc and Vg values against the zeta potential of particles. These phase diagrams indicate that the colloidal solids range (surrounded by Vc and a minimum Vg lines) is narrow for nanometer sized powder and wide for submicrometer sized powder. The solids content range of dried green compacts was very narrow for submicrometer sized powder but relatively wide for nanometer sized powder due to the low flexibility of colloidal structure during drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Aksay, F.F. Lange, and B.I. Davis, J. Am. Ceram. Soc. 66 (10), C-190-C-192 (1983).

    Article  Google Scholar 

  2. F. F. Lange, B. I. Davis, and E. Wright, J. Am. Ceram. Soc. 69 (1), 66–69 (1986).

    Article  CAS  Google Scholar 

  3. Y. Hirata and I. A. Aksay, in Ceramic Microstructures in ‘86, Role of Interfaces, edited by J. A. Pask and A. G. Evans (Plenum Press, New York, 1987), pp. 612–622.

    Google Scholar 

  4. H. Lee and M.D. Sacks, J. Am. Ceram. Soc. 73 (7), 1884–1893 (1990).

    Article  CAS  Google Scholar 

  5. H. Lee and M.D. Sacks, J. Am. Ceram. Soc. 73 (7), 1894–1900 (1990).

    Article  CAS  Google Scholar 

  6. I. A. Aksay, in Ceramics: Today and Tomorrow, edited by S. Naka, N. Soga, and S. Kume (Ceramic Society of Japan, 1986), pp. 71–85.

    Google Scholar 

  7. Y. Hirata, in Proc. Int. Symp. on Fine Ceramics Arita ‘91, Saga Prefectural Government, 31–46 (1991).

  8. Y. Hirata, S. Nakagama, and Y. Ishihara, J. Ceram. Soc. Jpn. 98 (4), 316–321 (1990).

    Article  CAS  Google Scholar 

  9. A. Bleier and G. Westmoreland, J. Am. Ceram. Soc. 74 (12), 3100–3111 (1991).

    Article  CAS  Google Scholar 

  10. J. C. Chang, B. V. Velamakanni, F. F. Lange, and D. S. Pearson, J. Am. Ceram. Soc. 74 (9), 2201–2204 (1991).

    Article  CAS  Google Scholar 

  11. Y. Hirata, I. Haraguchi, and Y. Ishihara, J. Ceram. Soc. Jpn. 98 (9), 951–956 (1990).

    Article  CAS  Google Scholar 

  12. Y. Hirata, S. Matsushita, S. Nakagama, Y. Ishihara, and S. Hori, J. Ceram. Soc. Jpn. 97 (9), 881–887 (1989).

    Article  CAS  Google Scholar 

  13. W.B. Russel, Mater. Res. Bull. XVI (8), 27–31 (1991).

    Article  Google Scholar 

  14. I. A. Aksay and R. Kikuchi, in Science of Ceramic Chemical Processing, edited by L. L. Hench and D. R. Ulrich (John Wiley & Sons, Inc., New York, 1986), pp. 513–521.

    Google Scholar 

  15. L. T. Kuhn, R. M. McMeeking, and F. F. Lange, J. Am. Ceram. Soc. 74 (3), 682–685 (1991).

    Article  CAS  Google Scholar 

  16. R. L. Hoffman, Mater. Res. Bull. XVI (8), 32–37 (1991).

    Article  Google Scholar 

  17. B. V. Velamakanni and F. F. Lange, J. Am. Ceram. Soc. 74 (1), 166–172 (1991).

    Article  CAS  Google Scholar 

  18. A.P. Philipse, B.C. Bonekamp, and H.J. Veringa, J. Am. Ceram. Soc. 73 (9), 2720–2727 (1990).

    Article  CAS  Google Scholar 

  19. P.D. Williams and D.D. Hawn, J. Am. Ceram. Soc. 74 (7), 1614–1618 (1991).

    Article  CAS  Google Scholar 

  20. Y. Hirata, S. Nakagama, and Y. Ishihara, J. Mater. Res. 5, 640–646 (1990).

    Article  CAS  Google Scholar 

  21. J. Reed, in Introduction to the Principles of Ceramic Processing (John Wiley & Sons, Inc., New York, 1988), pp. 229–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirata, Y., Haraguchi, I. & Ishihara, Y. Particle size effects on colloidal processing of oxide powders. Journal of Materials Research 7, 2572–2578 (1992). https://doi.org/10.1557/JMR.1992.2572

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.2572

Navigation