Skip to main content
Log in

A small-angle x-ray scattering study of microstructure evolution during sintering of sol-gel-derived porous nanophase titania

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The evolution of microstructure as a function of firing temperature in sol-gel derived porous titania xerogels was investigated by small-angle x-ray scattering (SAXS). SAXS curves for xerogels fired below 550 °C exhibit a well-defined structure peak. This peak indicates the presence of a high degree of order in the electron density correlations associated with the interparticle structure factor. Results from electron microscopy and SAXS give a primary particle mean diameter of 50 Å, while scaling analysis of the scattered intensity at large momentum transfer values yields the Porod exponent 4, indicating a sharp transition zone between the solid and void phases. The pore volume fraction of the unfired xerogel is consistent with random close-packing of spheres. The internal surface area decreases almost linearly with increasing firing temperature. Rapid grain growth and pore coarsening begin near 90% of theoretical density, and lead to a breakdown in pore interconnectedness and the development of isolated pores. Observed enhanced sintering properties may be attributed primarily to the large surface-to-mass ratio of the sol-gel particles. The SAXS curves were adequately fit using a bicontinuous phase model developed for late-stage spinodal decomposition structures. Alternatively, the microstructure can be described by a hierarchical close-packing of spheres model. SAXS results are compared with data from gas adsorption and electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).

    Article  CAS  Google Scholar 

  2. Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, edited by L. C. Klein (Noyes, Park Ridge, NJ, 1988).

    Google Scholar 

  3. C. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press, New York, 1990).

    Google Scholar 

  4. R.B. Pettit, C.S. Ashley, S.T. Reed, and C.J. Brinker, in Ref. 2, Chap. 5, pp. 80–109.

  5. M.A. Anderson, M.J. Gieselmann, and Q. Xu, J. Membrane Sci. 39, 243 (1988).

    Article  CAS  Google Scholar 

  6. R. L. Lipeles, D. J. Coleman, and M. S. Leung, in Better Ceramics Through Chemistry II, edited by C. J. Brinker, D. E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 665.

    Google Scholar 

  7. J.B. Blum, in Ref. 2, Chap. 14, pp. 296–302.

  8. P. A. Haas, Chem. Eng. Prog. April, 44 (1989).

  9. D. W. Schaefer and K. D. Keefer, in Fractals in Physics, edited by L. Pietronero and E. Tosatti (Proc. 6th Trieste Int. Symp. Fractals Phys. Elsevier, Amsterdam, 1986), pp. 39–45.

    Book  Google Scholar 

  10. A.F. Wright, J. Non-Cryst. Solids 76, 43 (1985).

    Article  CAS  Google Scholar 

  11. D. L. Price, S. C. Moss, R. Reijers, M-L. Soboungi, and S. Susman, J. Phys.: Condens. Matter 1, 1005 (1989).

    CAS  Google Scholar 

  12. Small Angle X-ray Scattering, edited by O. Glatter and O. Kratky (Academic Press, New York, 1982).

  13. M. A. Anderson, J. Tiscareno-Lechuga, Q. Xu, and C. G. Hill, in Novel Materials in Heterogeneous Catalysis, edited by R. T. K. Baker and L. L. Murrell (ACS, Washington, DC, 1990), Chap. 19, pp. 198–215.

    Book  Google Scholar 

  14. J. Sabate, M. A. Anderson, H. Kikkawa, M. Edwards, and C. G. Hill, J. Catal. 127, 167 (1991).

    Article  CAS  Google Scholar 

  15. M. J. Gieselmann, M. A. Anderson, M. D. Moosemiller, and C. G. Hill, Separation Sci. Technol. 23, 1695 (1988).

    Article  CAS  Google Scholar 

  16. R.J. Uhlhorn, Ph.D. Thesis, University of Twente, 1990.

  17. R. W. Siegel, H. Hahn, R. S. Zongquan, S. Ramasamy, L. Ting, and R. Gronsky, J. Phys. (Paris) 49, 681 (1988).

    Article  Google Scholar 

  18. R. Pool, Science 248, 1186 (1990).

    Article  CAS  Google Scholar 

  19. F. Zernike and J.A. Prins, Z. Phys. 41, 184 (1927).

    Article  Google Scholar 

  20. J. B. Hayter, Faraday Discuss. Chem. Soc. 76, 7 (1983).

    Article  Google Scholar 

  21. J.K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

    Article  CAS  Google Scholar 

  22. E. Thiele, J. Chem. Phys. 39, 474 (1963).

    Article  Google Scholar 

  23. N. W. Ashcroft and J. Lekner, Phys. Rev. A 145, 83 (1966).

    Article  CAS  Google Scholar 

  24. C. G. deKruif, W. J. Briels, R. P. May, and A. Vrij, Langmuir 4, 668 (1988).

    Article  CAS  Google Scholar 

  25. A. Hohr, H. Neumann, P.W. Schmidt, and P. Pfiefer, Phys. Rev. B 38, 1462 (1988).

    Article  CAS  Google Scholar 

  26. J. D. Bernal and J. L. Finney, Faraday Discuss. Chem. Soc. 43, 62 (1967).

    Article  Google Scholar 

  27. J. L. Finney, Proc. Roy. Soc. Lond. A 319, 479 (1970).

    CAS  Google Scholar 

  28. G.Y. Onoda, Adv. Ceram. 21, 567 (1987).

    Google Scholar 

  29. G. D. Scott, Nature (London) 194, 956 (1962).

    Article  CAS  Google Scholar 

  30. S. H. Chen, E. Y. Sheu, J. Kalus, and H. Hoffmann, J. Appl. Cryst. 21, 751 (1988).

    Article  CAS  Google Scholar 

  31. P. Debye and A.M. Bueche, J. Appl. Phys. 20, 518 (1949).

    Article  CAS  Google Scholar 

  32. P. Debye, H. R. Anderson, and H. Brumberger, J. Appl. Phys. 28, 679 (1957).

    Article  CAS  Google Scholar 

  33. R. W. Hopper, J. Non-Cryst. Solids 49, 263 (1982).

    Article  CAS  Google Scholar 

  34. J.W. Cahn, J. Chem. Phys. 42, 93 (1965).

    Article  CAS  Google Scholar 

  35. N.F. Berk, J. Appl. Cryst. 21, 645 (1988).

    Article  Google Scholar 

  36. R.W. Hopper, J. Non-Cryst. Solids 70, 111 (1985).

    Article  CAS  Google Scholar 

  37. K. F. Bradley, S. H. Chen, and P. Thiyagarajan, Phys. Rev. A 42, 6015 (1990).

    Article  CAS  Google Scholar 

  38. K. F. Bradley (private communication).

  39. G. Porod, Kolloid Z. 124, 83 (1951).

    Article  CAS  Google Scholar 

  40. W. Ruland, J. Appl. Crystallogr. 4, 70 (1971).

    Article  Google Scholar 

  41. G. Porod, in Small-Angle X-ray Scattering, edited by O. Glatter and O. Kratky (Academic Press, New York, 1982), Chap. 2, pp. 17–51.

    Google Scholar 

  42. R. W. Hendricks, J. Appl. Crystallogr. 11, 15 (1978).

    Article  CAS  Google Scholar 

  43. International Tables for X-Ray Crystallography, edited by J. A. Ibers and W. C. Hamilton (Kynoch Press, Birmingham, England, 1974), Vol. IV, Sect. 2.1.

  44. T.P. Russell, J.S. Lin, S. Spooner, and G.D. Wignall, J. Appl. Cryst. 21, 629 (1988).

    Article  CAS  Google Scholar 

  45. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  46. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic Press, London, 1982).

    Google Scholar 

  47. J. D. Bernal, Proc. Royal Soc. A (London) 280, 299 (1964).

    CAS  Google Scholar 

  48. F. Chaput, A. Lecomte, A. Dauger, and J. P. Boilot, Chem. Mater. 1, 199 (1989).

    Article  CAS  Google Scholar 

  49. J.E. Epperson, R.W. Siegel, J.W. White, J.A. Eastman, Y.X. Liao, and A. Narayanasamy, in Multicomponent Ultrafine Microstructures, edited by L.E. McCandlish, D.E. Polk, R.W. Siegel, and B. H. Kear (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 15.

    Google Scholar 

  50. J.E. Epperson, R.W. Siegel, J.W. White, T.E. Klippert, A. Narayanasamy, J.A. Eastman, and F. Trouw, in Neutron Scattering for Materials Science, edited by S. M. Shapiro, S. C. Moss, and J. D. Jorgensen (Mater. Res. Soc. Symp. Proc. 166, Pittsburgh, PA, 1990), p. 87.

    Google Scholar 

  51. R.W. Siegel and J.A. Eastman, in Multicomponent Ultrafine Microstructures, edited by L.E. McCandlish, D.E. Polk, R.W. Siegel, and B.H. Kear (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 3.

    Google Scholar 

  52. J. A. Pask, in Proc. Int. Symp. on Factors in Densification and Sintering of Oxide and Non-oxide Ceramics, edited by S. Sōmiya and S. Saito (Gakujutsu Bunken Fukyu-kai, Tokyo, 1978), p. 580.

    Google Scholar 

  53. M.F. Yan, Adv. Ceram. 21, 635 (1987).

    CAS  Google Scholar 

  54. F.F. Lange and B.J. Kellett, J.Am. Ceram. Soc. 72, 735 (1989).

    Article  CAS  Google Scholar 

  55. C.P. Cameron and R. Raj, J. Am. Ceram. Soc. 71, 1031 (1988).

    Article  CAS  Google Scholar 

  56. R. D. Shannon and J. A. Pask, Am. Mineralogist 49, 1707 (1964).

    CAS  Google Scholar 

  57. R. L. Coble and J. E. Burke, in Progress in Ceramic Science, edited by J.E. Burke (1963), Chap. 4, pp. 197–251.

    Google Scholar 

  58. B. C. Larson and H. D. Bale, in Small-Angle X-Ray Scattering, edited by H. Brumberger (Gordon and Breach, New York, 1967), pp. 467–476.

    Google Scholar 

  59. G. W. Scherer, J. Non-Cryst. Solids 100, 77 (1988).

    Article  CAS  Google Scholar 

  60. D.J. Yarusso and R. Register, computer code MHSCA4 (Department of Chemical Engineering, University of Wisconsin, Madison, Madison, WI, 1988).

    Google Scholar 

  61. P.V. Beurten, D. Frenkel, S. Coenen and M. Duits, computer code SCATCO (Van’t Hoff Laboratory, University of Utrecht, The Netherlands, 1990).

    Google Scholar 

  62. M. Duits (private communication).

  63. J. C. Lasalle, S. Spooner, and L. H. Schwartz, in Phase Transformations in Solids, edited by T. Tsakalakos (Elsevier, New York, 1984), pp. 549–555.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackley, V.A., Anderson, M.A. & Spooner, S. A small-angle x-ray scattering study of microstructure evolution during sintering of sol-gel-derived porous nanophase titania. Journal of Materials Research 7, 2555–2571 (1992). https://doi.org/10.1557/JMR.1992.2555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.2555

Navigation