Skip to main content
Log in

The influence of an oxidation inhibitor on the elevated temperature fracture resistance of carbon/carbon composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This fracture study evaluates the role of a fiber/matrix interfacial glass on the toughening of two different carbon/carbon (C/C) composites. Both composites incorporate a two-dimensional layup of 8-harness satin weave continuous fiber fabric, but differ in several aspects, the most significant of which is the presence of an oxidation inhibitor in one of these. The fracture behavior of both materials was determined in three-point flexure at 20 through 1650 °C. Microstructural studies indicate that the nonhomogeneous distribution of the oxidation inhibitor within the fiber bundles controls the fracture behavior. Electron microprobe results indicate a high concentration of the glass oxidation inhibitor associated with the inter-bundle matrix, while the intra-bundle matrix is composed primarily of carbon. Accordingly, debonding along the inter-bundle interfaces characterizes the oxidation inhibited composite, whereas the nonoxidation inhibited samples debond by individual fibers. Both materials exhibit strongly rising R-curves throughout the test temperature range. At the higher test temperatures the oxidation inhibited C/C shows the greatest cumulative toughening component, although at a lower value of the fracture toughness. This is consistent with the observed increase in the percentage of fibers that experience individual pullout at the higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Awashi and J.L. Wood, Ceram. Eng. Sci. Proc. 9 (7–8), 553 (1988).

    Article  Google Scholar 

  2. D.W. McKee, Carbon 25, 551 (1987).

    Article  CAS  Google Scholar 

  3. S. Senet, R. E. Grimes, D. L. Hunn, and K. W. White, J. Mater. Sci. (in press).

  4. S. Senet, R. E. Grimes, D. L. Hunn, and K. W. White, Carbon 7, 1039 (1991).

    Article  Google Scholar 

  5. R. E. Grimes and K. W. White, Mechanics and Mechanisms of Damage in Composites and Multi-Materials, ESIS11, edited by D. Baptiste (Mechanical Engineering Publications, London, 1991), pp. 33–44.

  6. S. Ochiai and P. W. M. Peters, J. Mater. Sci. 17, 417 (1982).

    Article  CAS  Google Scholar 

  7. M.G. Jenkins, A.S. Kobayashi, K.W. White, and R.C. Bradt, J. Am. Ceram. Soc. 70 (6), 393 (1987).

    Article  CAS  Google Scholar 

  8. E. Fitzer, W. Huttner, and L. M. Manocha, Carbon 18, 291 (1980).

    Article  CAS  Google Scholar 

  9. A.L. Highsmith and K.L. Reifsnider, ASTM STP 775, 103 (1982).

    CAS  Google Scholar 

  10. K. W. White, R. C. Bradt, and A. S. Kobayashi, Proc. 7th Int. Conf. on Fracture, edited by K. Salama, K. Ravi-Chander, D. M. R. Tapun, and P. Rama Rao (Pergamon Press, Houston, TX, March 1989).

  11. D. Wastein, J. Am. Concrete Inst. 43 (9), 1041 (1947).

    Google Scholar 

  12. R. C. De Vekey and R. J. Majumdar, Mag. Concrete Res. 20, 229 (1968).

    Article  Google Scholar 

  13. L.B. Greszczuk, ASTM STP 452, 42 (1969).

    Google Scholar 

  14. P. Lawrence, J. Mater. Sci. 7, 1 (1972).

    Article  CAS  Google Scholar 

  15. K.M. Prewo and J.J. Brennan, J. Mater. Sci. 15 (2), 463 (1980).

    Article  CAS  Google Scholar 

  16. P.F. Becher and G.C. Wei, J. Am. Ceram. Soc. 67 (12), C267 (1984).

    Article  CAS  Google Scholar 

  17. P. F. Becher, T. N. Tiegs, J. C. Ogle, and W. H. Warwick, Fracture Mechanics of Ceramics, edited by R. C. Bradt et al., 7, 61 (1986).

  18. G. C. Wei and P. F. Becher, Am. Ceram. Soc. Bull. 3 (2), 298 (1985).

    Google Scholar 

  19. D. B. Marshall, B. N. Cox, and A. G. Evans, Acta Metall. 33 (11), 2013 (1985).

    Article  Google Scholar 

  20. A. G. Evans and K.T. Faber, J. Am. Ceram. Soc. 67 (4), 225 (1984).

    Google Scholar 

  21. S. Bar-Ziv and D.G. Brandon, Ceram. Eng. Sci. Proc. 9 (7–8), 777 (1988).

    Article  CAS  Google Scholar 

  22. C-H. Hsueh, P. F. Becher, and P. Angelini, J. Am. Ceram. Soc. 71 (11), 929 (1988).

    Article  CAS  Google Scholar 

  23. A. G. Evans, J. Am. Ceram. Soc. 73 (2), 187 (1990).

    Article  CAS  Google Scholar 

  24. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (J. Wiley and Sons, New York, 1976).

    Google Scholar 

  25. M. G. Jenkins, A. S. Kobayashi, K. W. White, and R. C. Bradt, Int. J. Fract. 34, 281 (1987).

    Article  Google Scholar 

  26. K.W. White and L-P. Guazzone, J. Am. Ceram. Soc. 74 (9), 2280 (1991).

    Article  CAS  Google Scholar 

  27. J. Chlopek and S. Blzewicz, Carbon 29 (2), 127 (1991).

    Article  CAS  Google Scholar 

  28. L.E. Jones and P.A. Thrower, Carbon 29 (2), 251 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucchesi, A.J., Hay, J.C. & White, K.W. The influence of an oxidation inhibitor on the elevated temperature fracture resistance of carbon/carbon composites. Journal of Materials Research 7, 1795–1804 (1992). https://doi.org/10.1557/JMR.1992.1795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.1795

Navigation