Skip to main content
Log in

Critical current and microstructure of uniaxially aligned, polycrystalline YBa2Cu3O7−δ

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three processing routes that generate uniaxial alignment but otherwise yield very different microstructure and critical current are compared. Fine grain size and c-axis alignment are obtained in magnetically aligned ceramics, pyrolyzed thick films, and in situ deposited thin films. The dense, well-aligned microstructure of the in situ process produces the highest zero field critical current Jc > 104 A/cm2 at 77 K. However, the critical current is suppressed in low magnetic field, suggesting that uniaxial alignment is not sufficient to avoid Josephson-type intergranular coupling. Above 1 T, the critical current of the aligned ceramic dominates in spite of its less ideal microstructure. The critical current in this high field region is one to two orders of magnitude greater than that of nonaligned material. This result implies the existence of a 3-d percolative network of strong links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakahara, G. J. Fisanick, M. F. Yan, R. B. van Dover, T. Boone, and R. Moore, J. Cryst. Growth 85, 639 (1987).

    Article  CAS  Google Scholar 

  2. Donglu Shi, J. G. Chen, Ming Xu, A. L. Cornelius, U. Balachandran, and K. C. Goretta, Supercond. Sci. Technol. 3, 222 (1990); J. E. Blendell, C. A. Handwerker, M. D. Vaudin, and E. R. Fuller, Jr., J. Cryst. Growth 89, 93 (1988); F. Stucki, P. Brüesch, and T. Baumann, Physica C 156, 461 (1988).

  3. K. B. Alexander, D. M. Kroeger, J. Bentley, and J. Brynestad, preprint; S. E. Babcock, T. F. Kelly, P. J. Lee, J. M. Seuntjens, L. A. Lavanier, and D. C. Larbalestier, Physica C 152, 25 (1988).

  4. R. L. Peterson and J. W. Ekin, Physica C 157, 325 (1989).

    Article  CAS  Google Scholar 

  5. D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990).

    Article  CAS  Google Scholar 

  6. S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. van Dover, G. W. Kammlott, R. A. Fastnacht, and H. D. Keith, Appl. Phys. Lett. 52, 2074 (1988); K. Salama, V. Selvamanickam, L. Gao, and K. Sun, Appl. Phys. Lett. 54, 2352 (1989).

  7. H. Küpfer, C. Keller, K. Salama, and V. Selvamanickam, Appl. Phys. Lett. 55, 1903 (1989).

    Article  Google Scholar 

  8. J. Mannhart and C. C. Tsuei, Z. Phys. B 77, 55 (1989).

    Article  Google Scholar 

  9. E. M. Gyorgy, R. B. van Dover, S. Jin, R. C. Sherwood, L. F. Schneemeyer, T. H. Tiefel, and J. V. Waszczak, Appl. Phys. Lett. 53, 2223 (1989); G.W. Crabtree, J. Z. Liu, A. Umezawa, W. K. Kwok, C. H. Sowers, S. K. Malik, B. W. Veal, D. J. Lam, M. B. Brodsky, and J. W. Downey, Phys. Rev. B 36, 4021 (1987).

  10. The possible role of oxygen vacancies as pinning sites has been suggested by M. Daeumling, J. M. Seuntjens, and D. C. Larbalestier, Nature 346, 332 (1990). Irradiation has been used to raise the critical current density of crystals, as discussed by R. B. van Dover, E. M. Gyorgy, A. E. White, L. F. Schneemeyer, R. J. Felder, and J. V. Waszczak, Appl. Phys. Lett. 56, 2681 (1990).

  11. G. Deutscher, IBM J. Res. Develop. 33, 293 (1989); G. Deutscher, Physica C 153–155, 15 (1988).

  12. J. E. Tkaczyk and K. W. Lay, J. Mater. Res. 5, 1368 (1990); R. H. Arendt, A. R. Gaddipati, M. F. Garbauskas, E. L. Hall, H. R. Hart, Jr., K.W. Lay, J. D. Livingston, F. E. Luborsky, and L. L. Schilling, in High Temperature Superconductors, edited by M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 203.

  13. Q. Li, O. Meyer, X. X. Xi, J. Geerk, and G. Linker, Appl. Phys. Lett. 55, 1792 (1989); B. H. Moeckly, S. E. Russek, D. K. Lathrop, R. A. Buhrman, Jian Li, and J. W. Mayer, Appl. Phys. Lett. 57, 1687 (1990).

  14. A. Gupta, R. Jagannathan, E. I. Cooper, E. A. Giess, J. I. Landman, and B. W. Hussey, Appl. Phys. Lett. 52, 2077 (1988).

    Article  CAS  Google Scholar 

  15. P. C. McIntyre, M. J. Cima, Man Fai Ng, R. C. Chiu, and W. E. Rhine, J. Mater. Res. 5, 2771 (1990).

    Article  Google Scholar 

  16. E. Ban, Y. Matsuoka, and H. Ogawa, J. Appl. Phys. 67, 4367 (1990).

    Article  CAS  Google Scholar 

  17. S. Witanachchi, H. S. Kwok, X. W. Wang, and D. T. Shaw, Appl. Phys. Lett. 53, 234 (1988).

    Article  CAS  Google Scholar 

  18. D. P. Norton, D. H. Lowndes, J. D. Budai, D. K. Christen, E. C. Jones, K. W. Lay, and J. E. Tkaczyk, Appl. Phys. Lett. 57, 1164 (1990).

    Article  CAS  Google Scholar 

  19. R. W. McCallum, J. Metals (January 1989).

  20. P. Müller, M. Schubert, Ch. Rodig, G. Funchs, and K. Fischer, Appl. Phys. Lett. 55, 917 (1989); T. M. Shaw, D. Dimos, P. E. Batson, A. G. Schrott, D. R. Clarke, and P. R. Duncombe, J. Mater. Res. 5, 1176 (1990).

  21. H. Fjellvåg, P. Karen, A. Kjekshus, P. Kofstad, and T. Norby, Acta Chem. Scand. A 42, 178 (1988); T. B. Lindemer, C. R. Hubbard, and J. Brynestad, Physica C 167, 312 (1990).

  22. Y. Gao, T. Li, K. L. Merkle, J. N. Mundy, C. Zhang, U. Balachandran, and R. B. Poeppel, Mater. Lett. 9, 347 (1990); Y. Gao, K. L. Merkle, C. Zhang, U. Balachandran, and R. B. Poeppel, J. Mater. Res. 5, 1363 (1990); P. K. Gallagher, Thermochimica Acta 148, 229 (1989).

  23. J. W. Ekin, A. I. Braginski, A. J. Panson, M. A. Janocko, D. W. Capone II, N. J. Zaluzec, B. Flandermeyer, O. F. de Lima, M. Hong, J. Kwo, and S. H. Liou, J. Appl. Phys. 62, 4821 (1987); D. P. Hampshire, X. Cai, J. Seuntjens, and D. C. Larbalestier, Supercond. Sci. Technol. 1, 12 (1988).

  24. M. F. Chisholm and S. J. Pennycook, Nature 351, 47 (1991).

    Article  CAS  Google Scholar 

  25. J. W. Ekin, T. M. Larson, A. M. Hermann, Z. Z. Sheng, K. Togano, and H. Kumakura, Physica C 160, 489 (1989).

    Article  CAS  Google Scholar 

  26. J. E. Tkaczyk, K. W. Lay, and H. R. Hart, in Superconductivity and Applications, edited by H. S. Kwok, Yi-Han Kao, and D. T. Shaw (Plenum Press, New York, 1990), p. 557.

    Chapter  Google Scholar 

  27. J. W. Ekin, H. R. Hart, Jr., and A. R. Gaddipati, J. Appl. Phys. 68, 2285 (1990).

    Article  CAS  Google Scholar 

  28. B. Dorri, K. Herd, E. T. Laskaris, J. E. Tkaczyk, and K. W. Lay, J. Appl. Phys. 27, 1858 (1991).

    Google Scholar 

  29. S. W. Filipczuk, Physica C 173, 1 (1991).

    Article  CAS  Google Scholar 

  30. L. T. Romano, P. R. Wilshaw, N. J. Long, and C. R. M. Grovenor, Supercond. Sci. Technol. 1, 285 (1988).

    Article  Google Scholar 

  31. C. V. Thompson, J. Appl. Phys. 58, 763 (1985).

    Article  CAS  Google Scholar 

  32. S. M. Garrison, N. Newman, B. F. Cole, K. Cole, K. Char, and R. W. Barton, Appl. Phys. Lett. 58, 2168 (1991).

    Article  CAS  Google Scholar 

  33. L. M. Fisher, N.V. Il’in, N. A. Podievskikh, and S. I. Zakharachenko, Solid State Commun. 73, 687 (1990); M. V. Fistul’, JETP Lett. 49, 113 (1990).

  34. T. Ishii and T. Yamada, Physica C 159, 483 (1989).

    Article  Google Scholar 

  35. S. E. Babcock and D. C. Larbalestier, J. Mater. Res. 5, 919 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkaczyk, J.E., Briant, C.L., DeLuca, J.A. et al. Critical current and microstructure of uniaxially aligned, polycrystalline YBa2Cu3O7−δ. Journal of Materials Research 7, 1317–1327 (1992). https://doi.org/10.1557/JMR.1992.1317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.1317

Navigation