Skip to main content
Log in

Thermochemistry in the system Cu–In–S at 298 K

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A thermochemical analysis is performed in the system Cu–In–S at 298 K. Free energies of the compounds In6S7, In2.8S4, CuInS2, CuIn5S8, and of the recently discovered CuIn2 have been estimated, the numerical values (kJ/mol) of which are −1043 ± 21, −556 ± 8.8, −315 ± 54, −1238 ± 113, and −51 ± 26. A consistent set of data is used for the calculation of the Gibbs triangle as well as of the predominance area diagram. The results are in nearly complete agreement with the measurements published recently, in particular with those using the nuclear method of perturbed angular correlations (PAC). The compound CuInS2, one of the possible base materials for thin film solar cells, is shown to equilibrate with nearly all of the compounds of the system. A nonvariant four-phase equilibrium CuIn2−InS–In–CuInS2 is found at about 298 K. It is noted where more precise data are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Fearheiley, N. Dietz, R. Scheer, and H.J. Lewerenz, Proc. Symp. on State-of-the-Art Program on Compound Semiconductors XIII and Metallization of III-V Compound Semiconductors, Seattle, WA, October 14–18, 1990.

  2. H.J. Lewerenz, H. Goslowsky, K-D. Husemann, and S. Fichter, Nature 321, 687 (1986).

    Article  CAS  Google Scholar 

  3. K. W. Mitchell, G. A. Pollock, and A. V. Mason, Proc. 20th IEEE Photovoltaic Specialist Conf., Las Vegas, NV, 1988, p. 1542.

  4. M. Brüßler, H. Metzner, K-D. Husemann, and H.J. Lewerenz, Phys. Rev. B38, 9268 (1988).

    Article  Google Scholar 

  5. H. Metzner, M. BrüBler, K-D. Husemann, and H.J. Lewerenz, submitted to Phys. Rev. B.

  6. M. L. Fearheiley, N. Dietz, M. Birkholz, and C. Hopfner, J. Electron. Mater., in press.

  7. D. J. Chakrabarti and D. E. Laughlin, Bull. Alloy Phase Diagrams 4, 254 (1983).

    Article  Google Scholar 

  8. J. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973, Suppl. 1976).

  9. JANAF Thermochemical Tables, 3rd ed., in J. Phys. and Chem. Ref. Data 14 (1985), Suppl.

  10. T. Godecke and K. Schubert, Z. Metallkde. 76, 358 (1985).

    Google Scholar 

  11. K. C. Mills, Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (Butterworth’s, London, 1974).

    Google Scholar 

  12. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, the NBS tables of chemical thermodynamic properties, in J. Phys. and Chem. Ref. Data 11 (1982), Suppl.

  13. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed. (Pergamon Press, Oxford, New York, 1979).

  14. T. B. Lindemer, Th. M. Besmann, and C. E. Johnson, J. Nucl. Mater. 100, 178 (1981).

    Article  CAS  Google Scholar 

  15. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements (ASM, Metals Park, OH, 1973).

    Google Scholar 

  16. P. R. Subramanian and D. E. Laughlin, Bull. Alloy Phase Diagrams 10, 554 (1989).

    Article  CAS  Google Scholar 

  17. K. C. Jain, M. Ellner, and K. Schubert, Z. Metallkde. 63, 456 (1972).

    CAS  Google Scholar 

  18. F. Weibke and H. Eggers, Z. anorg. allg. Chem. 220, 273 (1934).

    Article  CAS  Google Scholar 

  19. F. Weibke and H. Eggers, Z. Metallkde. 31, 228 (1939).

    CAS  Google Scholar 

  20. Th.P. Rajasekharan and K. Schubert, Z. Metallkde. 72, 275 (1981).

    CAS  Google Scholar 

  21. P. C. Wallbrecht, R. Blachnik, and K. C. Mills, Thermochim. Acta 48, 69 (1981).

    Article  CAS  Google Scholar 

  22. W. Keppner, T. Klas, W. Korner, R. Wesche, and G. Schatz, Phys. Rev. Lett. 54, 2371 (1985).

    Article  CAS  Google Scholar 

  23. W. Keppner, R. Wesche, T. Klas, J. Voigt, and G. Schatz, Thin Solid Films 143, 201 (1986).

    Article  CAS  Google Scholar 

  24. I.B. Kutsenok, V.A. Geiderikh, Ya. I. Gerasimov, and Kh. K. Yalkanen, Russ. J. Phys. Chem. 57, 1639 (1983).

    Google Scholar 

  25. J.J.M. Binsma, L.J. Giling, and J. Bloem, J. Cryst. Growth 50, 429 (1980).

    Article  CAS  Google Scholar 

  26. A.W. Verheijen, L.J. Giling, and J. Bloem, Mater. Res. Bull. XIV, 237 (1979).

    Article  Google Scholar 

  27. J.J.M. Binsma, J. Phys. Chem. Solids 44, 237 (1983).

    Article  CAS  Google Scholar 

  28. H. Wiedemeier and R. Santandrea, Z. anorg. allg. Chem. 497, 105 (1983).

    Article  CAS  Google Scholar 

  29. H. Neumann, Crystal Res. & Technol. 18, 1567 (1983).

    Article  CAS  Google Scholar 

  30. K.J. Bachmann, F.S.L. Hsu, F.A. Thiel, and H.M. Kasper, J. Electron. Mater. 6, 431 (1977).

    Article  CAS  Google Scholar 

  31. M. L. Fearheiley, private communication, December 1990.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migge, H. Thermochemistry in the system Cu–In–S at 298 K. Journal of Materials Research 6, 2381–2386 (1991). https://doi.org/10.1557/JMR.1991.2381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.2381

Navigation