Skip to main content
Log in

Constitutive modeling of the effects of oxygen on the deformation behavior of silicon

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A systematic theory is presented that models the effects of interstitial oxygen on the deformation behavior of silicon. The theory is based on calculation of the dependence of the dislocation velocity on the applied stress in the crystal and determination of the locking and unlocking stresses for dislocation motion. Internal stresses in the oxygen-hardened crystals are modeled by the superposition of the unlocking stress, a back stress due to the interaction between mobile dislocations, and an internal stress that arises from the interaction between a dislocation and the oxygen cloud around other dislocations. The initiation of dislocation multiplication is modeled as a two-step thermally activated process; the first step is the unlocking of the dislocation and the second step is the formation of jogs along the dislocation line. The coupled model for oxygen transport and dislocation motion is used to simulate crystal deformation in dynamic experiments and to reproduce stress-strain curves. The predictions of the initial stage of deformation are in good agreement with the experimental data of Yonenaga et al. [J. Applied Phys. 56, 2346 (1984)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Ghandi, VLSI Fabrication Principles: Silicon and Gallium Arsenide (Wiley, New York, 1983).

    Google Scholar 

  2. K. V. Ravi, Imperfections and Impurities in Semiconductor Silicon (Wiley, New York, 1981).

    Google Scholar 

  3. J. R. Patel and A. R. Chaudhuri, Phys. Rev. 143, 601 (1966).

    Article  CAS  Google Scholar 

  4. H. Alexander and P. Haasen, Solid State Phys. 22, 27 (1968).

    Article  CAS  Google Scholar 

  5. H.G. Brion, P. Haasen, and H. Siethoff, Acta Metall. 19, 283 (1971).

    Article  CAS  Google Scholar 

  6. K. Sumino, in Defects and Properties of Semiconductors: Defect Engineering, edited by J. Chikawa, K. Sumino, and K. Wada (KTK Scientific Publishers, Tokyo, 1987), p.227.

  7. G. Jacob, in Proc. Semi-Insulating III-V Materials Conf., Evian, 2 (1982).

  8. Y. Seki, J. Watanabe, and J. Matsui, J. Appl. Phys. 49, 822 (1978).

    Article  CAS  Google Scholar 

  9. J. C. Mikkelsen, Jr., in Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon, edited by J. C. Mikkelsen, Jr., S. J. Pearton, J. W. Corbett, and S. J. Pennycook (Mater. Res. Soc. Symp. Proc. 59, Pittsburgh, PA, 1986), pp. 3,19.

  10. W. Lin and K. E. Benson, Annu. Rev. Mater. Sci. 17, 293 (1987).

    Article  Google Scholar 

  11. K. Sumino, H. Harada, and I. Yonenaga, Jpn. J. Appl. Phys. 19, L49 (1980).

  12. K. Sumino and I. Yonenaga, Jpn. J. Appl. Phys. 20, L685 (1981).

  13. D. Maroudas and R.A. Brown, J. Appl. Phys. 69, 3865 (1991).

    Article  CAS  Google Scholar 

  14. D. Maroudas and R.A. Brown, Appl. Phys. Lett. 58, 1842 (1991).

    Article  CAS  Google Scholar 

  15. A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. London A62, 49 (1949).

    Article  Google Scholar 

  16. A.H. Cottrell and M.A. Jawson, Proc. R. Soc. London A199, 104 (1949).

    Google Scholar 

  17. H. Yoshinaga and S. Morozumi, Philos. Mag. 23, 1367 (1971).

    Article  CAS  Google Scholar 

  18. M. Needels, J. D. Joannopoulos, Y. Bar-Yam, and S. T. Pantelides, Phys. Rev. B43, 4208 (1991).

    Article  Google Scholar 

  19. I. Yonenaga, K. Sumino, and K. Hoshi, J. Appl. Phys. 56, 2346 (1984).

    Article  CAS  Google Scholar 

  20. M. Imai and K. Sumino, Philos. Mag. A 47, 599 (1983).

    Article  CAS  Google Scholar 

  21. R. Bullough and R.C. Newman, Rep. Prog. Phys. 33, 101 (1970).

    Article  Google Scholar 

  22. S. Nandedkar and J. Narayan, Philos. Mag. A 56, 625 (1987).

    Article  CAS  Google Scholar 

  23. J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982).

    Google Scholar 

  24. F. R. N. Nabarro, Theory of Crystal Dislocations (Dover, New York, 1987).

    Google Scholar 

  25. K. Sumino and M. Imai, Philos. Mag. A 47, 753 (1983).

    Article  CAS  Google Scholar 

  26. P. Haasen, Z. Phys. 167, 461 (1962).

    Article  CAS  Google Scholar 

  27. M. Suezawa, K. Sumino, and I. Yonenaga, Phys. Status Solidi A 51, 217 (1979).

    Article  CAS  Google Scholar 

  28. O. W. Dillon, Jr., C. T. Tsai, and R. J. DeAngelis, J. Cryst. Growth 82, 50 (1987).

    Article  CAS  Google Scholar 

  29. J. C. Lambropoulos, J. Cryst. Growth 84, 349 (1987).

    Article  CAS  Google Scholar 

  30. Landolt-Bornstein: Crystal and Solid State Physics, edited by K.H. Hellwege (Springer, Berlin, 1979), Vol. 11, p. 116.

  31. M.D. Kluge, J.R. Ray, and A. Rahman, J. Chem. Phys. 85, 4028 (1986).

    Article  CAS  Google Scholar 

  32. J. R. Ray, Comput. Phys. Rep. 8, 109 (1988).

    Article  CAS  Google Scholar 

  33. J. D. Eshelby, in Vacancies ‘76, edited by R. E. Smallman and J. E. Harris (The Metals Society, U.K., 1976), p. 3; also see Ref. 24, p. 403.

  34. A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Oxford University Press, 1953).

  35. K. Sumino and H. Harada, Philos. Mag. A 44, 1319 (1981).

    Article  CAS  Google Scholar 

  36. W. G. Johnston and J. J. Gilman, J. Appl. Phys. 30, 129 (1959).

    Article  CAS  Google Scholar 

  37. W.G. Johnston and J.J. Gilman, J. Appl. Phys. 31, 632 (1960).

    Article  CAS  Google Scholar 

  38. J.CM. Li, J. Appl. Phys. 32, 593 (1961).

    Article  CAS  Google Scholar 

  39. H. Wiedersich, J. Appl. Phys. 33, 854 (1962).

    Article  CAS  Google Scholar 

  40. J. R. Low, Jr. and A. M. Turkalo, Acta Metall. 10, 215 (1962).

    Article  CAS  Google Scholar 

  41. R. Labusch, Phys. Status Solidi 10, 645 (1965).

    Article  CAS  Google Scholar 

  42. I. Yonenaga and K. Sumino, Phys. Status Solidi A 50, 685 (1978).

    Article  CAS  Google Scholar 

  43. B. Boley and J. Weiner, Theory of Thermal Stresses (Wiley, New York, 1960).

    Google Scholar 

  44. E. Orowan, Proc. Phys. Soc. London 52, 8 (1940).

    Article  Google Scholar 

  45. K. Sumino, Mater. Sci. Eng. 13, 269 (1974).

    Article  CAS  Google Scholar 

  46. E. Schmid and W. Boas, Plasticity of Crystals (Hughes, London, 1968).

    Google Scholar 

  47. A. S. Jordan, R. Caruso, and A. R. Von Neida, Bell System Technol. J. 59, 593 (1980).

    Article  CAS  Google Scholar 

  48. G. Müller, R. Rupp, J. Volkl, H. Wolf, and W. Blum, J. Cryst. Growth 71, 771 (1985).

    Article  Google Scholar 

  49. D. Maroudas and R.A. Brown, J. Cryst. Growth 108, 399 (1991).

    Article  Google Scholar 

  50. A. S. Krausz and H. Eyring, Deformation Kinetics (Wiley, New York, 1975).

    Google Scholar 

  51. M.I. Heggie, B. Jones, and A. Umerski, in Atomic Scale Calculations of Structure in Materials, edited by M. S. Daw and M.A. Schlüter (Mater. Res. Soc. Symp. Proc. 193, Pittsburgh, PA, 1990), p. 277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maroudas, D., Brown, R.A. Constitutive modeling of the effects of oxygen on the deformation behavior of silicon. Journal of Materials Research 6, 2337–2352 (1991). https://doi.org/10.1557/JMR.1991.2337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.2337

Navigation