Skip to main content
Log in

On the mechanism of grain-boundary migration in metals: A molecular dynamics study

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The migration of a (100) θ = 43.6°(Σ29) twist grain boundary is observed during the course of a molecular-dynamics simulation. The atomic-level details of the migration are investigated by determining the time dependence of the planar structure factor, a function of the planar interparticle bond angles, and the location of the center of a mass of planes near the grain boundary. It is found that a migration step consists of local bond rearrangements which, when the simulation cell is made large enough, produce domain-like structures in the migrating plane. Although no overall sliding is observed during migration, a local sliding of the planes near the migrating grain boundary accompanies the migration process. It is suggested that a three-dimensional cloud of thermally produced Frenkel-like point defects near the boundary accompanies, and facilitates, its migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.F. Mott, Proc. Phys. Soc. 60, 391 (1948).

    Article  Google Scholar 

  2. D. Tumbull, Trans. AIME 661, 191 (1950).

    Google Scholar 

  3. C.M.F. Rae and D.A. Smith, Philos. Mag. A 41, 477 (1980).

    Article  CAS  Google Scholar 

  4. H. Gleiter, Acta Metall. 17, 565 (1969), ibid., p. 853.

  5. B. B. Straumal, V. G. Sursayeva, and L. S. Shvindlerman, Phys. Met. Metall. 49, 102 (1980) [Fiz. metall. metalloved. 49, 1021 (1980)].

  6. Ch. V. Kopetskii, V. G. Sursayeva, and L. S. Shvindlerman, Sov. Phys. Dokl. 23, 137 (1978) [Dokl. Akad. Nauk. SSSR 238, 842 (1978)].

  7. S.E. Babcock and R.W. Balluffi, Acta Metall. 37, 2357 (1989).

    Article  CAS  Google Scholar 

  8. S.E. Babcock and R.W. Balluffi, Acta Metall. 37, 2367 (1989).

    Article  CAS  Google Scholar 

  9. G. H. Bishop, R. J. Harrison, T. Kwok, and S. Yip, J. Appl. Phys. 53, 5596 (1982).

    Article  CAS  Google Scholar 

  10. R.J. Jhan and P.D. Bristowe, Scripta Metall. 24, 1313 (1990).

    Article  CAS  Google Scholar 

  11. C. Counterman, L-Q. Chen, and G. Kalonji, J. Physique Colloque C5, C5-139 (1988).

  12. J. F. Lutsko, D. Wolf, S. Yip, S. R. Phillpot, and T. Nguyen, Phys. Rev. B38, 11572 (1988).

    Article  Google Scholar 

  13. J. F. Lutsko, D. Wolf, S. R. Phillpot, and S. Yip, Phys. Rev. B40, 2841 (1989).

    Article  Google Scholar 

  14. J. M. Rickman, S. R. Phillpot, and D. Wolf, in Atomic Scale Calculations of Structure in Materials, edited by M.S. Daw and M.A. Schliiter (Mater. Res. Soc. Symp. Proc. 193, Pittsburgh, PA, 1990), p. 325.

  15. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

    Article  CAS  Google Scholar 

  16. D. Wolf, J. F. Lutsko, and M. Kluge, in Atomistic Simulation of Materials—Beyond Pair Potentials, edited by V. Vitek and D. Srolovitz (Plenum Press, New York, 1989), p. 245.

  17. M. S. Daw and M. I. Baskes, Phys. Rev. B29, 6443 (1986).

    Google Scholar 

  18. M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Article  CAS  Google Scholar 

  19. See, for example, C. Goux, Can. Metal. Quarterly 13, 9 (1974).

    Article  CAS  Google Scholar 

  20. G. Ciccotti, M. Guillope, and V. Pontikis, Phys. Rev. B27, 5576 (1983).

    Article  Google Scholar 

  21. P.S. Ho, T. Kwok, T. Nguyen, C. Nitta, and S. Yip, Scripta Metall. 19, 993 (1985).

    Article  CAS  Google Scholar 

  22. K. T. Aust, in Interfaces Conference, Melbourne, edited by R. C. Gifkins (Butterworth’s, London, 1969), p. 307.

  23. A.H. King and D.A. Smith, Philos. Mag. A 42, 495 (1980).

    Article  CAS  Google Scholar 

  24. K.W. Kehr, R. Kutner, and K. Binder, Phys. Rev. B23, 4931 (1981).

    Article  Google Scholar 

  25. M.F. Ashby, Surf. Sci. 31, 498 (1972).

    Article  CAS  Google Scholar 

  26. D. Wolf, S. R. Phillpot, J. A. Jaszczak, J. M. Rickman, and S. Yip (unpublished work).

  27. J. F. Lutsko and D. Wolf, unpublished work; see also S.R. Phillpot, S. Yip, P.R. Okamoto, and D. Wolf, in Atomic-Level Properties of Interface Materials, edited by D. Wolf and S. Yip, to be published by Chapman and Hall, London.

  28. D. Wolf, Acta Metall. 37, 1983 (1989); ibid., 2823 (1989).

  29. J. D. Gunton and M. Droz, Introduction to the Theory of Metastable and Unstable States (Springer-Verlag, Berlin, 1983).

    Book  Google Scholar 

  30. W. Burton, N. Cabrera, and F.C. Frank, Philos. Trans. R. Soc. London A 143, 199 (1951); J.D. Weeks, in Ordering in Strongly Fluctuating Condensed Matter Systems, edited by T. Rieste (Plenum Press, New York, 1980), p. 293.

  31. C. Rottman, Phys. Rev. Lett. 57, 735 (1986).

    Article  CAS  Google Scholar 

  32. V. Rosato, G. Ciccotti, and V. Pontikis, Phys. Rev. B33, 1860 (1986).

    Article  Google Scholar 

  33. F. Abraham, Adv. Phys. 35, 1 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rickman, J.M., Phillpot, S.R., Wolf, D. et al. On the mechanism of grain-boundary migration in metals: A molecular dynamics study. Journal of Materials Research 6, 2291–2304 (1991). https://doi.org/10.1557/JMR.1991.2291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.2291

Navigation