Skip to main content
Log in

Microstructure of hardened and softened zirconia after xenon implantation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ion-channeling and transmission electron microscopy (TEM) techniques were used to examine the microstructure of single-crystal Y2O3 stabilized cubic zirconia (YSZ) after implantation with 240 keV Xe+ ions. The observed microstructure was related to Knoop indentation hardness measurements. These measurements showed an increase in hardness for low ion-doses, reaching some maximum value, then a decrease in hardness at higher doses. In the hardening regime, below 7.5 × 1015 Xe+/cm2, point defects and dislocation networks were observed by TEM. Ion-channeling showed a corresponding increase in damage as a function of ion-dose. For doses between 7.5 × 1015 and 3 × 1016 Xe+/cm2 the hardness falls, and the amount of damage, measured with ion-channeling, reaches a limiting value at less than complete damage. In this dose range the Xe concentration continues to increase beyond the dose where the amount of damage saturates. For high doses, greater than 3 × 1016 Xe+/cm2, where softening of the zirconia occurs, additional reflections appear in the electron diffraction pattern that are consistent with the lattice parameter of solid Xe. A diffuse ring is also visible; this is believed to be due to the presence of fluid Xe. Both ion-channeling and TEM show that a significant amount of monocrystalline zirconia remains even up to doses of 1 × 1017 Xe+/cm2. There is also evidence for the presence of recrystallized zirconia at the high doses. Since so much crystalline material remains, it seems that amorphization of the zirconia is not the dominant cause of the softening at high doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. McHargue, Defect and Diffusion Forum 57–58, 359 (1988).

    Article  Google Scholar 

  2. R. Kelly and H. M. Naguib, in Atomic Collision Phenomena in Solids, edited by D. W. Palmer, M. W. Thompson, and P. D. Townsend (Elsevier Publishing Company, Inc., New York, 1970).

    Google Scholar 

  3. H. M. Naguib and R. Kelly, Radiat. Eff. 25, 1 (1975).

    Article  CAS  Google Scholar 

  4. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, 1960).

    Google Scholar 

  5. C. J. McHargue, G. C. Farlow, C. W. White, B. R. Appleton, P. Angelini, and H. Naramoto, Nucl. Instrum. Methods in Phys. Res. B10/11, 569 (1987).

    Google Scholar 

  6. G. C. Farlow, P. S. Sklad, C. W. White, and C. J. McHargue, in Ion Implantation and Ion Beam Processing of Materials, edited by G. K. Hubler, O. W. Holland, C. R. Clayton, and C. W. White (Mater. Res. Soc. Symp. Proc. 27, Pittsburgh, PA, 1984), p. 395.

    Google Scholar 

  7. H. Naramoto, C. W. White, J. M. Williams, C. J. McHargue, O. W. Holland, M. M. Abraham, and B. R. Appleton, J. Appl. Phys. 54, 683 (1983).

    Article  CAS  Google Scholar 

  8. E. L. Fleischer, W. Hertl, T. L. Alford, P. Børgesen, and J. W. Mayer, J. Mater. Res. 5, 385 (1990).

    Article  CAS  Google Scholar 

  9. P. J. Burnett and T. F. Page, J. Mater. Sci. 19, 3524 (1984).

    Article  CAS  Google Scholar 

  10. C. B. Carter, S. R. Summerfelt, L. A. Tietz, M. G. Norton, and D. W. Susnitzky, Inst. Phys. Conf. Ser. 98, 415 (1989).

    Google Scholar 

  11. M. G. Norton, S. R. Summerfelt, and C. B. Carter, Appl. Phys. Lett. 56, 2246 (1990).

    Article  CAS  Google Scholar 

  12. (ASTM C849–81).

  13. L. R. Doolittle, Nucl. Instrum. Methods in Phys. Res. B9, 344 (1985).

    Article  CAS  Google Scholar 

  14. L. C. Feldman, J. W. Mayer, and S. T. Picraux, Materials Analysis by Ion Channeling (Academic Press, New York, 1982).

    Google Scholar 

  15. C. J. McHargue, G. C. Farlow, G. M. Begun, J. M. Williams, C. W. White, B. R. Appleton, P. S. Sklad, and P. Angelini, Nucl. Instrum. Methods in Phys. Res. B16, 212 (1986).

    Article  CAS  Google Scholar 

  16. K. Asaumi, Phys. Rev. B 29, 7026 (1984).

    Article  CAS  Google Scholar 

  17. R. Reichlin, K. E. Brister, A. K. McMahan, M. Ross, S. Martin, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. Lett. 62, 669 (1989).

    Article  CAS  Google Scholar 

  18. M. G. Norton, E. L. Fleischer, W. Hertl, C. B. Carter, J. W. Mayer, and E. Johnson, Phys. Rev. B (in press, 1991).

  19. J. C. Desoyer, C. Templier, J. Delafond, and H. Garem, Nucl. Instrum. Methods in Phys. Res. B119/20, 450 (1987).

    Article  Google Scholar 

  20. C. Templier, H. Garem, and J. P. Riviere, Philos. Mag. A 53, 667 (1986).

    Article  CAS  Google Scholar 

  21. L. H. Schoenlein, L. W. Hobbs, and A. H. Heuer, J. Appl. Cryst. 13, 375 (1980).

    Article  CAS  Google Scholar 

  22. R. C. Birtcher and W. Jager, Ultramicroscopy 22, 267 (1987).

    Article  CAS  Google Scholar 

  23. S. J. Bull and T. F. Page, J. Mater. Sci. 23, 4217 (1988).

    Article  CAS  Google Scholar 

  24. C. W. White, C. J. McHargue, P. S. Sklad, L. A. Boatner, and G. C. Farlow, Mater. Sci. Rep. 4, 41 (1989).

    Article  CAS  Google Scholar 

  25. C. J. McHargue, G. C. Farlow, C. W. White, J. M. Williams, B. R. Appleton, and H. Naramoto, Mater. Sci. Eng. 69, 123 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischer, E.L., Norton, M.G., Zaleski, M.A. et al. Microstructure of hardened and softened zirconia after xenon implantation. Journal of Materials Research 6, 1905–1912 (1991). https://doi.org/10.1557/JMR.1991.1905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.1905

Navigation