Skip to main content
Log in

Interdiffusion reaction, phase sequence, and glass formation in Ni-Zr composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The progress of solid-state reaction in Ni–Zr composite wires with different elemental layer thicknesses has been studied in detail. Besides x-ray diffraction and differential scanning calorimetry, dilatometric measurements, magnetization and resistivity measurements, and cross–sectional transmission electron microscopy were used to monitor the reaction during constant-rate heating and to characterize the various reaction products. An amorphous phase initially forms at the interface between the elemental layers. As soon as the layer thickness exceeds a critical value, the intermetallic NiZr phase appears at the interface between the amorphous phase and pure Zr, as shown by TEM investigations. This is due to a reduced velocity of the reaction front caused by the longer diffusion path enabling the intermetallic phase to become stable. As shown in experiments at a constant heating rate, a second intermetallic phase forms at higher temperatures at the interface between Zr and crystalline NiZr. The amorphous phase remains unchanged up to crystallization at about 520 °C. To obtain fully amorphous material, the interdiffusion reaction must be completed (or especially the Zr layers must be completely reacted) before the intermetallic NiZr phase starts to form. A criterion for achieving completely amorphous bulk material is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett. 51, 415 (1983).

    Article  CAS  Google Scholar 

  2. B. M. Clemens, W. L. Johnson, and R. B. Schwarz, J. Non-Cryst. Solids 61 & 62, 817 (1984).

    Article  Google Scholar 

  3. H. Schröder, K. Samwer, and U. Köster, Phys. Rev. Lett. 54, 197 (1985).

    Article  Google Scholar 

  4. L. Schultz, in Proc. MRS Europe Meeting on Amorphous Metals and Non-Equilibrium Processing, edited by M. von Allmen, Les Editions de Physique, Les Ulis-Cedex, France, 1985, p. 135.

    Google Scholar 

  5. L. Schultz, in Proc. 5th Int. Conf. on Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (North Holland, Amsterdam, 1984), p. 1585.

    Google Scholar 

  6. M. Atzmon, J. D. Verhoeven, J. D. Gibson, and W. L. Johnson, in Proc. 5th Int. Conf. on Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (North Holland, Amsterdam, 1984), p. 1561.

    Google Scholar 

  7. W. L. Johnson, Mater. Sci. Eng. 97, 1 (1988).

    Article  CAS  Google Scholar 

  8. L. Schultz, in Science and Technology of Rapidly Quenched Alloys, edited by M. Tenhover, W. L. Johnson, and L. E. Tanner (Mater. Res. Soc. Symp. Proc. 80, Pittsburgh, PA, 1987), p. 97.

    Google Scholar 

  9. H. U. Krebs and K. Samwer, Europhys. Lett. 2, 141 (1986).

    Article  CAS  Google Scholar 

  10. M. van Rossum, M-A. Nicolet, and W. L. Johnson, Phys. Rev. B 29, 5498 (1984).

    Article  Google Scholar 

  11. K. Samwer, J. Less-Common Met. 145, 25 (1988).

    Article  Google Scholar 

  12. L. Schultz, Z. Phys. Chem. 157, 257 (1988).

    Article  CAS  Google Scholar 

  13. E. J. Cotts, W. J. Meng, and W. L. Johnson, Phys. Rev. Lett. 57, 2295 (1986).

    Article  CAS  Google Scholar 

  14. R. J. Highmore, J. E. Evetts, A. L. Greer, and R. E. Somekh, Appl. Phys. Lett. 50, 566 (1987).

    Article  CAS  Google Scholar 

  15. L. Schultz, in Proc. NATO Adv. Study Inst. on Amorphous and Liquid Materials, edited by E. Liischer, G. Fritsch, and G. Jacucci, Passo della Mendola, 1985, p. 508.

    Google Scholar 

  16. Y. T. Cheng, W. L. Johnson, and M-A. Nicolet, Appl. Phys. Lett. 47, 800 (1985).

    Article  CAS  Google Scholar 

  17. M. Atzmon and F. Spaepen, in Science and Technology of Rapidly Quenched Alloys, edited by M. Tenhover, W. L. Johnson, and L. E. Tanner (Mater. Res. Soc. Symp. Proc. 80, Pittsburgh, PA, 1987), p. 55.

    Google Scholar 

  18. H.E. Kissinger, Anal. Chem. 29, 1703 (1959).

    Google Scholar 

  19. J. C. Barbour, Phys. Rev. Lett. 55, 2872 (1985).

    Article  CAS  Google Scholar 

  20. K. M. Unruh, W. J. Meng, W. L. Johnson, A. P. Thakoor, and S. K. Khanna, in Layered Structures, Epitaxy, and Interfaces, edited by J. M. Gibson and L. R. Dawson (Mater. Res. Soc. Symp. Proc. 37, Pittsburgh, PA, 1985), p. 551.

    Google Scholar 

  21. H. Hahn, R.S. Averback, and S.J. Rothman, Phys. Rev. B 33, 8825 (1986).

    Article  CAS  Google Scholar 

  22. H. Hahn, R. S. Averback, and H-M. Shyu, J. Less-Common Met. 142, 345 (1988).

    Article  Google Scholar 

  23. K. Hoshino, R. S. Averback, H. Hahn, and S. J. Rothman, J. Mater. Res. 3, 55 (1988).

    Article  CAS  Google Scholar 

  24. E. J. Cotts, G. C. Wong, and W. L. Johnson, Phys. Rev. B 37, 9049 (1988).

    Article  CAS  Google Scholar 

  25. W. J. Meng, C.W. Nieh, and W. L. Johnson, Appl. Phys. Lett. 51, 1693 (1987).

    Article  CAS  Google Scholar 

  26. S. B. Newcomb and K. N. Tu, Appl. Phys. Lett. 48, 1436 (1986).

    Article  CAS  Google Scholar 

  27. R. Bormann, F. Gärtner, and K. Zöltzer, J. Less-Common Met. 145, 19 (1988).

    Article  CAS  Google Scholar 

  28. J. Eckert, L. Schultz, E. Hellstern, and K. Urban, J. Appl. Phys. 64, 3224 (1988).

    Article  CAS  Google Scholar 

  29. W. J. Meng, C. W. Nieh, E. Ma, B. Fultz, and W. L. Johnson, Mater. Sci. Eng. 97, 87 (1988).

    Article  CAS  Google Scholar 

  30. K. Samwer, Phys. Rep. 161, 1 (1988).

    Article  CAS  Google Scholar 

  31. K. Samwer, H. Schröder, and M. Moske, in Phase Transitions in Condensed Systems — Experiments and Theory, edited by G. S. Cargill III, F. Spaepen, and K-N. Tu (Mater. Res. Soc. Symp. Proc. 57, Pittsburgh, PA, 1987), p. 405.

    Google Scholar 

  32. K. Samwer, H. Schröder, and K. Pampus, Mater. Sci. Eng. 97, 63 (1988).

    Article  CAS  Google Scholar 

  33. R. J. Highmore, A. L. Greer, J. A. Leake, and J. E. Evetts, Mater. Lett. 6, 401 (1988).

    Article  Google Scholar 

  34. A. M. Vredenberg, J. F. M. Westendorp, F. W. Saris, N. M. van der Pers, and T. H. de Keijser, J. Mater. Res. 1, 774 (1986).

    Article  CAS  Google Scholar 

  35. K. Pampus, K. Samwer, and J. Bottiger, Europhys. Lett. 3, 581 (1987).

    Article  CAS  Google Scholar 

  36. R. B. Schwarz, Mater. Res. Soc. Bull. May/June, 55 (1986).

  37. A. W. Weeber and H. Bakker, Physica B 153, 93 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, J., Schultz, L. & Urban, K. Interdiffusion reaction, phase sequence, and glass formation in Ni-Zr composites. Journal of Materials Research 6, 1874–1885 (1991). https://doi.org/10.1557/JMR.1991.1874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.1874

Navigation