Skip to main content
Log in

Alkali emission accompanying fracture of sodium silicate glasses

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Measurements of atomic Na emission accompanying the fracture of sodium trisilicate glass and a soda lime glass in vacuum were made by quadrupole mass spectroscopy and surface ionization techniques. Peak Na° emission intensities occur some 3–6 ms after the fracture event and decay over tens of milliseconds. This behavior is attributed to the diffusion of Na+ ions into a layer of damaged material at the surface where the ions are subsequently neutralized and thermally emitted as Na°. Charge carriers generated during fracture and subsequently trapped at defect sites apparently play important roles in charge compensating Na+ diffusion and in neutralizing Na+. During the first 300 ms following fracture, we also observe intense, short lived (400 μs) bursts in Na° emission which may be associated with catastrophic relaxation of residual stresses. The kinetics of Na emission suggest that the relaxation of newly formed glass surfaces involves rather complex surface physical and chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Dickinson, S. C. Langford, L. C. Jensen, G. L. McVay, J.F. Kelso, and C. G. Pantano, J. Vac. Sci. Technol. A 6, 1084 (1988).

    Article  CAS  Google Scholar 

  2. J. T. Dickinson, L. C. Jensen, and A. Jahan-Latibari, J. Vac. Sci. Technol. A 2, 1112 (1984).

    Article  CAS  Google Scholar 

  3. S. C. Langford, J. T. Dickinson, and L. C. Jensen, J. Vac. Sci. Technol. A 7, 1829 (1989).

    Article  CAS  Google Scholar 

  4. J. T. Dickinson, L. C. Jensen, and M. R. McKay, J. Vac. Sci. Technol. A 4, 1648 (1986).

    Article  CAS  Google Scholar 

  5. J.T. Dickinson, L. C. Jensen, and M. R. McKay, J. Vac. Sci. Technol. A 5, 1162 (1987).

    Article  CAS  Google Scholar 

  6. S. C. Langford, J. T. Dickinson, and L. C. Jensen, J. Appl. Phys. 62, 1437 (1987).

  7. J. T. Dickinson, L. C. Jensen, S. C. Langford, and J. P. Hirth, J. Mater. Res. 6, 112 (1991).

    Article  CAS  Google Scholar 

  8. J. P. Lacharme, P. Champion, and D. Léger, Scanning Electron Microsco. 1981, Part I, 237–243 (1981).

  9. C. G. Pantano, J. F. Kelso, and M. J. Suscavage, in Advances in Materials Characterization (MRS Vol. 15), edited by D. R. Rossington, R. A. Condrate, and R. L. Snyder (Plenum Press, New York, 1983), pp. 1–38.

  10. J. F. Kelso, C. G. Pantano, and S. H. Garofalini, Surf. Sci. 134, L543 (1983).

  11. S.H. Garofalini and S.M. Levine, J. Am. Ceram. Soc. 68, 376 (1985).

  12. L.L. Hench and D.E. Clark, J. Non-Cryst. Solids 28, 83 (1978).

  13. E. Ya. Zandberg and N.I. Ionov, Poverkhnostnaya ionizatsiya (Nauka, Moscow, 1960) [Surface Ionization, translated by E. Harnik (Israel Program for Scientific Translations, Jerusalem, 1971)].

  14. S. Datz and E. H. Taylor, J. Chem. Phys. 25, 389 (1956).

  15. E. E. Donaldson, J. T. Dickinson, and S. K. Bhattacharya, J. Adhesion 25, 281 (1988).

  16. E. E. Donaldson, M. H. Miles, and J. T. Dickinson, J. Mater. Sci. 24, 4453 (1989).

    Article  CAS  Google Scholar 

  17. J. F. Kelso and C. G. Pantano, J. Vac. Sci. Technol. A 3, 1343 (1985).

    Article  CAS  Google Scholar 

  18. R. Weichert and K. Schonert, J. Mech. Phys. Solids 22, 127–133 (1974).

    Article  Google Scholar 

  19. R. Weichert and K. Schonert, J. Mech. Phys. Solids 26, 151–161 (1978).

    Article  Google Scholar 

  20. Neill Weber and Martin Goldstein, J. Chem. Phys. 41, 2898 (1964).

    Article  CAS  Google Scholar 

  21. T. A. Michalske and W.L. Smith, Bull. Am. Phys. Soc. 36, 1035 (A) (1991).

  22. Y.X. Wang, F. Ohuchi, and P.H. Holloway, J. Am. Vac. Sci. Tech. A 2, 732 (1984).

    Article  CAS  Google Scholar 

  23. S.H. Garofalini and D.M. Ziri, J. Vac. Sci. Technol. A 6, 975 (1988).

    Article  CAS  Google Scholar 

  24. R. Caracciolo and S. H. Garofalini, J. Am. Ceram. Soc. 71, C-346 (1988).

  25. T. F. Soules and R. F. Busbey, J. Chem. Phys. 78, 6307 (1983).

  26. G.N. Greaves, A. Fontaine, P. Lagarde, D. Raoux, and S.J. Gurman, Nature 293, 611 (1983).

    Article  Google Scholar 

  27. Chung Lim and D. E. Day, J. Am. Ceram. Soc. 60, 198 (1977).

  28. J.E. Kelly III, J.F. Cordaro, and M. Tomozawa, J. Non-Cryst. Solids 41, 47 (1980).

    Article  CAS  Google Scholar 

  29. J. P. Vigouroux, J. P. Duraud, A. Le Moel, C. Le Gressus, and D.L. Griscom, J. Appl. Phys. 57, 5139 (1985).

  30. R.A. Murray and W.Y. Ching, J. Non-Cryst. Solids 94, 144 (1987).

    Article  CAS  Google Scholar 

  31. B.R. Lawn, T.P. Dabbs, and C.J. Fairbanks, J. Mater. Sci. 18, 2785 (1983).

  32. K.W. Peter, J. Non-Cryst. Solids 5, 103 (1970).

    Article  CAS  Google Scholar 

  33. A. Arora, D. B. Marshall, B. R. Lawn, and M. V. Swain, J. Non-Cryst. Solids 31, 415 (1979).

    Article  CAS  Google Scholar 

  34. D. M. Marsh, Fracture of Solids, edited by D. C. Drucker and J. J. Gilman (Interscience Publishers, New York, 1963), pp. 143–155.

  35. R.H. Doremus and W. A. Johnson, J. Mater. Sci. 14, 2236 (1979).

    Article  CAS  Google Scholar 

  36. R. H. Doremus and J. F. Kay, J. Mater. Sci. 13, 855 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langford, S.C., Jensen, L.C., Dickinson, J.T. et al. Alkali emission accompanying fracture of sodium silicate glasses. Journal of Materials Research 6, 1358–1368 (1991). https://doi.org/10.1557/JMR.1991.1358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.1358

Navigation