Skip to main content
Log in

Accumulation of structural defects in ion-irradiated Ca2Nd8(SiO4)6O2

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ion irradiations of the rare-earth orthosilicate, Ca2Nd8(SiO4)6O2, have been carried out using both alpha particles (emitted from a 238PuO2 source) and 3 MeV argon ions. The unit cell exhibits anisotropic expansion under irradiation, consistent with expectations based on the polyhedral connectivity within the structure. A least-squares analysis of the interatomic distances suggests that the unit-cell expansions are primarily due to changes in oxygen-oxygen distances and cation separations between neighboring polyhedra rather than to bonds within polyhedra. The irradiation-induced change in unit-cell volume is proportional to 1 – exp (BD), where B is an annealing rate constant and D is the dose, in agreement with a model for the accumulation of isolated point defects in the structure. The volume expansion saturates at 2.56% and 1.40% for the alpha and argon irradiations, respectively. Analysis of the results suggests that a significant fraction of the defects produced in the argon-ion displacement cascades are lost to in-cascade recombination. Differential scanning calorimetry of powder irradiated with 3 MeV argon ions to 20 ions/nm2 reveals an exothermic recovery peak at 350 °C with an activation energy of 1.3 ± 0.1 eV and average stored energy release of 28.2 J/g. There is no evidence for amorphization of this material under alpha or argon irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Weber, J. Am. Ceram. Soc. 65, 544 (1982).

  2. W.J. Weber, Radiat. Eff. 77, 295 (1983).

  3. W.J. Weber and Hj. Matzke, Radiat. Eff. 98, 93 (1986).

  4. W.J. Weber and Hj. Matzke, Mater. Lett. 5, 9 (1986).

    Article  CAS  Google Scholar 

  5. W.J. Weber and R.B. Greegor, Nucl. Instrum. Methods B46, 160 (1990).

    Article  CAS  Google Scholar 

  6. J.A. Fahey and W.J. Weber, in The Rare Earths in Modern Science and Technology, edited by G. J. McCarthy, H. E. Silber, and J. J. Rhyne (Plenum Press, New York, 1982), Vol. 3, pp. 341–344.

  7. J.A. Fahey, W.J. Weber, and F.J. Rotella, J. Solid State Chem. 60, 145 (1985).

  8. D. McConnell, Apatite (Springer-Verlag, New York, 1973).

    Book  Google Scholar 

  9. L. Cartz, F.G. Karioris, and R.A. Fournelle, Radiat. Eff. 54, 57 (1981).

  10. F. G. Karioris, K. A. Gowda, L. Cartz, and J. C. Labbe, J. Nucl. Mater. 108 & 109, 748 (1982).

    Article  Google Scholar 

  11. F.G. Karioris, K. Ramasami, K.A. Gowda, and L. Cartz, Philos. Mag. A 52, 525 (1985).

    Article  CAS  Google Scholar 

  12. E. R. Vance, L. Cartz, and F. G. Karioris, J. Mater. Sci. 19, 2943 (1984).

    Article  CAS  Google Scholar 

  13. W. J. Weber, J. Nucl. Mater. 98, 206 (1981).

    Article  CAS  Google Scholar 

  14. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

    Google Scholar 

  15. G.H. Kinchin and R.S. Pease, Rep. Prog. Phys. 18, 1 (1955).

    Article  Google Scholar 

  16. F. G. Karioris, K. A. Gowda, and L. Cartz, Radiat. Eff. Lett. 58, 1 (1981).

    Article  CAS  Google Scholar 

  17. W. M. Meier and H. Villiger, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 129, 411 (1969).

    Article  CAS  Google Scholar 

  18. W. H. Baur, in Structure and Bonding in Crystals, edited by M. O’Keefe and A. Navrotsky (Academic Press, New York, 1981), Vol. II, pp. 31–53.

  19. L. C. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaca, NY, 1960), pp. 543–562.

  20. W.J. Weber, Radiat. Eff. 83, 145 (1984).

    Article  CAS  Google Scholar 

  21. W.J. Weber, Radiat. Eff. 70, 217 (1983).

  22. W.J. Nellis, Inorg. Nucl. Chem. Lett. 13, 393 (1977).

    Article  CAS  Google Scholar 

  23. F.L. Vook and H.J. Stein, Radiat. Eff. 2, 23 (1969).

    Article  CAS  Google Scholar 

  24. V. Kuzovkov and E. Kotomin, Phys. Status Solidi B 105, 789 (1981).

    Article  CAS  Google Scholar 

  25. N. Nakae, A. Harada, and T. Kirihara, J. Nucl. Mater. 71, 314 (1978).

  26. W.J. Weber, J. Mater. Res. 5, 2687 (1990).

    Article  CAS  Google Scholar 

  27. R. B. Greegor, F. W. Lytle, R. C. Ewing, and R. F. Haaker, Nucl. Instrum. Methods B1, 587 (1984).

    Article  Google Scholar 

  28. R.B. Greegor, F.W. Lytle, R.J. Livak, and F.W. Clinard, Jr., J. Nucl. Mater. 152, 270 (1988).

    Article  Google Scholar 

  29. T. H. Blewitt, A. C. Klank, T. Scott, and W. J. Weber, in Radiation-Induced Voids in Metals, edited by J. W. Corbett and L. C. Ianniello (CONF-710601, National Technical Information Services, Springfield, VA, 1972), pp. 757–768.

    Google Scholar 

  30. H. Wiedersich, Radiat. Eff. 113, 97 (1990).

    Article  CAS  Google Scholar 

  31. T.C. Ehlert, K.A. Gowda, F.G. Karioris, and L. Cartz, Radiat. Eff. 70, 173 (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, W.J., Eby, R.K. & Ewing, R.C. Accumulation of structural defects in ion-irradiated Ca2Nd8(SiO4)6O2. Journal of Materials Research 6, 1334–1345 (1991). https://doi.org/10.1557/JMR.1991.1334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.1334

Navigation