Skip to main content
Log in

Characterization of electrochemical photovoltaic cells using polycrystalline CdSe and CdTe electrodes grown by a liquid metal-vapor reaction

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polycrystalline CdSe and CdTe layers were fabricated by putting liquid Cd in contact with Se or Te vapors under constant Ar flow. The crystalline structure, surface properties, and semiconducting properties of these materials have been determined. Both materials were found to be n-type semiconductors. The results show that, under the proper experimental conditions, the liquid metal-vapor reaction enables the synthesis of polycrystalline CdSe photoelectrodes with a 6.9% energy conversion efficiency when used in an electrochemical photovoltaic cell under 80 mW/cm2 of white light illumination. This efficiency rates amongst the highest ones measured under similar conditions using polycrystalline CdSe. These CdSe layers have a majority charge carrier density of ND = 2.6 × 1017 cm−3 and possess a highly textured surface which is assumed to be mainly responsible for the high photovoltaic efficiency. The highly textured CdTe samples obtained by this process, however, show a photovoltaic conversion efficiency of only 0.2%, and this is seen to be mainly due to their high majority charge carrier density of ND = 7.8 × 1019 cm−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Russak, J. Reichman, H. Witzke, S. K. Deb, and S. N. Chen, J. Electrochem. Soc. 127, 725 (1980).

    Article  CAS  Google Scholar 

  2. G. Hodes, Nature 285, 29 (1980).

    Article  CAS  Google Scholar 

  3. D. J. Miller and D. Haneman, Solar Energy Mater. 4, 223 (1981).

    Article  CAS  Google Scholar 

  4. R. O. Loutfy, T. F. McIntyre, D. K. Murti, and C. K. Hsiao, Solar Energy Mater. 5, 221 (1981).

    Article  CAS  Google Scholar 

  5. C.J. Liu and J.H. Wang, J. Electrochem. Soc. 129, 719 (1982).

    Article  CAS  Google Scholar 

  6. M. Tomkiewicz, I. Ling, and W. S. Parsons, J. Electrochem. Soc. 129, 2016 (1982).

    Article  CAS  Google Scholar 

  7. R.A. Boudreau and R.D. Rauh, J. Electrochem. Soc. 130, 513 (1983).

    Article  CAS  Google Scholar 

  8. R. Haak, D. Tench, and M. A. Russak, J. Electrochem. Soc. 131, 2709 (1984).

    Article  CAS  Google Scholar 

  9. R. O. Loutfy and D. S. Ng, Solar Energy Mater. 11, 319 (1984).

    Article  CAS  Google Scholar 

  10. V. Canevari, N. Romeo, G. Sberveglieri, S. Azzi, A. Tosi, M. Curti, and L. Zanotti, J. Vac. Sci. Technol. A2, 9 (1984).

    Article  Google Scholar 

  11. M. Cocivera, A. Darkowski, and B. Love, J. Electrochem. Soc. 131, 2514 (1984).

    Article  CAS  Google Scholar 

  12. M. Cocivera, J. Chem. Soc., Chem. Commun., 938 (1984).

  13. J. P. Szabo and M. Cocivera, J. Electrochem. Soc. 133, 1247 (1986).

    Article  CAS  Google Scholar 

  14. J. S. Lee, Y. K. Jun, and H. B. Im, J. Electrochem. Soc. 134, 249 (1987).

    Google Scholar 

  15. M. T. Gutierrez and P. Salvador, Solar Energy Mater. 15, 99 (1987).

    Article  CAS  Google Scholar 

  16. D. Iwanov and C. Nanev, Acta Physica Academiae Scientiarum Hungaricae 47, 83 (1979).

    Article  Google Scholar 

  17. J. S. Curran, R. Philippe, M. Roubin, and L. Mosoni, Solar Energy Mater. 9, 329 (1983).

    Article  CAS  Google Scholar 

  18. M.F. Lawrence, N. Du, R. Philippe, and J. P. Dodelet, J. Cryst. Growth 84, 133 (1987).

    Article  CAS  Google Scholar 

  19. J. S. Curran, R. Philippe, and G. Stremsdoerfer, J. Electroanal. Chem. 187, 121 (1985).

    Article  CAS  Google Scholar 

  20. M. F. Lawrence, N. Du, G. Stremsdoerfer, R. Philippe, and J. P. Dodelet, The Electrochemical Society, Extended Abstracts 86-1, 467 (1986).

    Google Scholar 

  21. B. Parkinson, J. Chem. Education 60, 338 (1983).

    Article  Google Scholar 

  22. S. M. Boudreau, R. D. Rauh, and R. A. Boudreau, J. Chem. Education 60, 498 (1983).

    Article  CAS  Google Scholar 

  23. Handbook of Chemistry and Physics, edited by R. C. Weast, 53rd ed. (CRC Press, Cleveland, OH, 1972), pp. D-175, D-176.

  24. Thermophysical Properties of Matter: Thermal Expansion, Metallic Elements and Alloys, edited by Y. S. Touloukian (IFI/Plenum, New York, 1975), The TPRC Data Series, Vol. 12, p. 40.

  25. Thermophysical Properties of Matter: Thermal Expansion, Non-metallic Solids, edited by Y. S. Touloukian (IFI/Plenum, New York, 1977), The TPRC Data Series, Vol. 13, pp. 1185, 1186, and 1243.

  26. C. M. Wolfe, N. Holonyak, Jr., and G. E. Stillman, Physical Properties of Semiconductors (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989), p. 341.

  27. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969), pp. 371, 372.

  28. J. I. Pankove, Optical Processes in Semiconductors, Solid State Physical Electronics Series, edited by N. Holonyak, Jr. (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971), pp. 34–36.

  29. M.A. Butler, J. Appl. Phys. 48, 1914 (1977).

    Article  CAS  Google Scholar 

  30. K. Colbow, D. J. Harrison, and B. L. Funt, J. Electrochem. Soc. 128, 547 (1981).

    Article  CAS  Google Scholar 

  31. G. Hodes, J. Manassen, and D. Cahen, Bull. Isr. Phys. Soc. 22, 100 (1976).

    Google Scholar 

  32. D. Cahen, G. Hodes, and J. Manassen, J. Electrochem. Soc. 125, 1623 (1978).

    Article  CAS  Google Scholar 

  33. A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, J. Am. Chem. Soc. 98, 1635 (1976).

    Article  CAS  Google Scholar 

  34. A. B. Ellis, S. W. Kaiser, J. M. Bolts, and M. S. Wrighton, J. Am. Chem. Soc. 99, 2839 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Z., Cinquino, M. & Lawrence, M.F. Characterization of electrochemical photovoltaic cells using polycrystalline CdSe and CdTe electrodes grown by a liquid metal-vapor reaction. Journal of Materials Research 6, 1293–1299 (1991). https://doi.org/10.1557/JMR.1991.1293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.1293

Navigation